
Image Category Classification Using Bag of Features

Image classification, or object recognition, is the process of identifying a specific object or class of objects
in an image or video. Computer Vision System Toolbox™ offers a variety of algorithms, tools, and tech-
niques to create image classification and object recognition systems.

This example shows how to use a “bag of features” approach for image category classification. This tech-
nique is also often referred to as bag of words. Visual image categorization is a process of assigning a cate-
gory label to an image under test. Categories may contain images representing just about anything, for
example, dogs, cats, trains, or boats.

Downloading the Caltech101 Image Set

To get started with bag-of-features image category classification, you can download a suitable image data
set. One of the most widely cited and used data sets is Caltech 101, collected by Fei-Fei Li, Marco
Andreetto, and Marc ‘Aurelio Ranzato.

% Location of the compressed data set

url = 'http://www.vision.caltech.edu/Image _ Datasets/Caltech101/101 _ ...

ObjectCategories.tar.gz';

% Store the output in a temporary folder

outputFolder = fullfile(tempdir, 'caltech101'); % define output folder

Note that downloading the 126MB set from the web can take 30 minutes or more depending on your
Internet connection. The commands below will block MATLAB® for that period of time. Alternatively, you
can use your web browser to first download the set to your local disk. If you choose that route, repoint the
'url' variable above to the file that you downloaded.

if ~exist(outputFolder, 'dir') % download only once

 disp('Downloading 126MB Caltech101 data set...');

 untar(url, outputFolder);

end

http://www.vision.caltech.edu/Image_Datasets/Caltech101

Loading the Image Sets

Instead of operating on the entire Caltech 101 set, which can be time consuming, you can use three catego-
ries: airplanes, ferry, and laptop. Note that for the bag-of-features approach to be effective, the majority of
each image’s area must be occupied by the subject of the category, for example, an object or a type of scene.

rootFolder = fullfile(outputFolder, '101 _ ObjectCategories');

Next, you can construct an array of image sets based on the following categories from Caltech 101:
'airplanes', 'ferry', and 'laptop'. To manage the data, you can use the imageSet class. Since
imageSet operates on image file locations, and therefore does not load all the images into memory, it is
safe to use on large image collections.

imgSets = [imageSet(fullfile(rootFolder, 'airplanes')), ...

 imageSet(fullfile(rootFolder, 'ferry')), ...

 imageSet(fullfile(rootFolder, 'laptop'))];

Each element of the imgSets variable now contains images associated with the particular category. You
can easily inspect the number of images per category as well as category labels as shown below:

{ imgSets.Description } % display all labels on one line

[imgSets.Count] % show the corresponding count of images

ans =

 'airplanes' 'ferry' 'laptop'

ans =

 800 67 81

Note that the labels were derived from directory names used to construct the image sets, but can be cus-
tomized by manually setting the Description property of the imageSet object.

Preparing the Training and Validation Image Sets

imgSets contains an unequal number of images per category. You can adjust it to balance the number of
images in the training set.

minSetCount = min([imgSets.Count]); % determine the smallest amount of

images in a category

% Use partition method to trim the set.

imgSets = partition(imgSets, minSetCount, 'randomize');

% Notice that each set now has exactly the same number of images.

[imgSets.Count]

ans =

 67 67 67

You can then separate the sets into training and validation data, using 30% of images from each set for the
training data and the remainder, 70%, for the validation data. To avoid biasing the results, you can ran-
domize the split.

[trainingSets, validationSets] = partition(imgSets, 0.3, 'randomize');

The above call returns two arrays of imageSet objects ready for training and validation tasks. Below, you
can see example images from the three categories included in the training data.

airplanes = read(trainingSets(1),1);

ferry = read(trainingSets(2),1);

laptop = read(trainingSets(3),1);

figure

subplot(1,3,1);

imshow(airplanes)

subplot(1,3,2);

imshow(ferry)

subplot(1,3,3);

imshow(laptop)

Creating a Visual Vocabulary and Training an Image Category Classifier

The bag-of-words technique was adapted to computer vision from the world of natural language process-
ing. Since images do not actually contain discrete words, you first construct a “vocabulary” of visual words
by extracting feature descriptors from representative images of each category.

Feature extraction is a type of dimensionality reduction that efficiently represents interesting parts of an
image as a compact feature vector. You can use a speeded-up robust features (SURF) detector to find inter-
esting points in the images and encode information about the area around the points as a feature vector.

You can extract features based on a feature detector like SURF, or you can define a regularly spaced grid to
extract feature descriptors. The grid method may lose fine-grained scale information, so it is best used
onlyfor images that do not contain distinct features, such as an image containing scenery, like the beach.
Using a SURF detector also provides greater scale invariance. By default, the algorithm runs the 'grid'
method.

Extracting visual words from training images.

This is accomplished with a single call to the bagOfFeatures function, which:

1. Extracts SURF features from all images in all image categories

2. Constructs the visual vocabulary by reducing the number of features through quantization of
 feature space using K-means clustering

bag = bagOfFeatures(trainingSets);

Creating Bag-Of-Features from 3 image sets.

--

* Image set 1: airplanes.

* Image set 2: ferry.

* Image set 3: laptop.

* Selecting feature point locations using the Grid method.

* Extracting SURF features from the selected feature point locations.

** The GridStep is [8 8] and the BlockWidth is [32 64 96 128].

* Extracting features from 20 images in image set 1...done. Extracted

81684 features.

* Extracting features from 20 images in image set 2...done. Extracted

70832 features.

* Extracting features from 20 images in image set 3...done. Extracted

98344 features.

* Keeping 80 percent of the strongest features from each image set.

* Balancing the number of features across all image sets to improve

clustering.

** Image set 2 has the least number of strongest features: 56666.

** Using the strongest 56666 features from each of the other image sets.

* Using K-Means clustering to create a 500 word visual vocabulary.

* Number of features : 169998

* Number of clusters (K) : 500

* Initializing cluster centers...100.00%.

* Clustering...completed 31/100 iterations (~0.42 seconds/iteration)...con-

verged in 31 iterations.

* Finished creating Bag-Of-Features

Additionally, the bagOfFeatures object provides an encode method for counting the visual word
occurrences in an image. It produced a histogram that becomes a new and reduced representation of an
image.

img = read(imgSets(1), 1);

featureVector = encode(bag, img);

% Plot the histogram of visual word occurrences

figure

bar(featureVector)

title('Visual word occurrences')

xlabel('Visual word index')

ylabel('Frequency of occurrence')

This histogram forms the basis for training a classifier and for the actual image classification. In essence, it
encodes an image into a feature vector.

Encoded training images from each category are fed into a classifier training process invoked by the
trainImageCategoryClassifier function. Note that this function relies on the multiclass linear
SVM classifier from Statistics and Machine Learning Toolbox™.

categoryClassifier = trainImageCategoryClassifier(trainingSets, bag);

Training an image category classifier for 3 categories.

--

* Category 1: airplanes

* Category 2: ferry

* Category 3: laptop

* Encoding features for category 1...done.

* Encoding features for category 2...done.

* Encoding features for category 3...done.

* Finished training the category classifier. Use evaluate to test the

classifier on a test set.

The above function utilizes the encode method of the input bag object to formulate feature vectors repre-
senting each image category from the trainingSets array of imageSet objects.

Evaluating Classifier Performance

Now that you have a trained classifier, categoryClassifier, you can evaluate it. First, test it with the
training set, which should produce a near-perfect confusion matrix, that is, with ones on the diagonal.

confMatrix = evaluate(categoryClassifier, trainingSets);

Evaluating image category classifier for 3 categories.

* Category 1: airplanes

* Category 2: ferry

* Category 3: laptop

* Evaluating 20 images from category 1...done.

* Evaluating 20 images from category 2...done.

* Evaluating 20 images from category 3...done.

* Finished evaluating all the test sets.

* The confusion matrix for this test set is:

 PREDICTED

KNOWN | airplanes ferry laptop

--

airplanes | 0.90 0.10 0.00

ferry | 0.00 1.00 0.00

laptop | 0.00 0.00 1.00

* Average Accuracy is 0.97.

Next, you can evaluate the classifier on the validationSet, which was not used during the training. By
default, the evaluate function returns the confusion matrix, which is a good initial indicator of how well
the classifier is performing.

confMatrix = evaluate(categoryClassifier, validationSets);

% Compute average accuracy

mean(diag(confMatrix));

Evaluating image category classifier for 3 categories.

* Category 1: airplanes

* Category 2: ferry

* Category 3: laptop

* Evaluating 47 images from category 1...done.

* Evaluating 47 images from category 2...done.

* Evaluating 47 images from category 3...done.

* Finished evaluating all the test sets.

* The confusion matrix for this test set is:

 PREDICTED

KNOWN | airplanes ferry laptop

--

airplanes | 0.77 0.15 0.09

ferry | 0.04 0.91 0.04

laptop | 0.09 0.00 0.91

© 2016 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

mathworks.com

93009v00 05/16

* Average Accuracy is 0.87.

You can derive additional statistics using the rest of the arguments returned by the evaluate function.
You can tweak the various parameters and continue evaluating the trained classifier until you are satisfied
with the results.

Trying the Newly Trained Classifier on Test Images

You can now apply the newly trained classifier to categorize new images.

img = imread(fullfile(rootFolder, 'airplanes', 'image _ 0690.jpg'));

[labelIdx, scores] = predict(categoryClassifier, img);

% Display the string label

categoryClassifier.Labels(labelIdx)

ans =

 'airplanes'

Learn More About Image Processing

• Computer Vision System Toolbox Overview 2:13

• Computer Vision Made Easy 35:43

• Computer Vision with MATLAB for Object Detection and Tracking 46:56

• Computer Vision System Toolbox (product trial)

http://www.mathworks.com/trademarks
http://www.mathworks.com
http://www.mathworks.com/videos/computer-vision-system-toolbox-overview-61219.html?s_tid=res_cvkit
http://www.mathworks.com/videos/computer-vision-made-easy-81802.html?form_seq=conf798&s_tid=res_cvkit
http://www.mathworks.com/videos/computer-vision-with-matlab-for-object-detection-and-tracking-81866.html?form_seq=conf1218&s_tid=res_cvkit
https://www.mathworks.com/programs/trials/trial_request.html?prodcode=VP&s?s_iid=pdf_trial_cvkit

