
00000v01

© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a l ist of additional trademarks.

Other product or brand names may be trademarks or registered trademarks of their respective holders.

Model Monitoring and Drift Detection: Ensuring the Health and Fairness of Deployed

Models

The paper focuses on maintaining the integrity and fairness of machine learning models as they are increasingly used in

decision-making. It emphasizes the importance of implementing fairness metrics and drift detection mechanisms to ensure

models remain unbiased and accurate over time. The paper discusses the role of global regulations in promoting responsible

AI, the utility of dashboards for real-time model monitoring, and the necessity of automated alerts for timely interventions. It

also highlights the significance of a continuous, proactive approach to model risk management (MRM), which includes the

integration of tools like Modelscape for comprehensive oversight and the operationalization of model performance, relevance,

and fairness throughout the model lifecycle.

Model Monitoring: A Necessity, not a Choice

Effective model monitoring is essential for the success of machine

learning (ML) models, especially as they face rapidly changing

environments and adaptive challenges. The dynamic nature of ML

models requires constant vigilance to ensure they remain accurate

and effective. Regulatory expectations, such as those outlined in

the PRA's SS3/18 paper, already emphasize the importance of

model monitoring. The COVID-19 pandemic highlighted the need

for this, as many models based on pre-pandemic assumptions

required adjustments. Using model overlays, where expert

judgment is applied to modify outputs, is a common mitigation

strategy. However, uncoordinated changes across interconnected

models can lead to failures. Therefore, ongoing, and timely

adjustments are crucial, not just periodic revalidations, to maintain

the integrity and performance of ML models in the face of evolving

conditions.

Figure 1: The model lifecycle as mentioned in SS/123

Advancing Model Integrity with Fairness

Metrics and Drift Detection

As machine learning models become integral to decision-making,

maintaining their integrity through fairness metrics and drift

detection is crucial. These measures are increasingly recognized

in global regulations, such as the Monetary Authority of

Singapore's FEAT principles (Fairness, Ethics, Accountability,

Transparency) and the European AI Act. Additionally, the Federal

Reserve in the United States is paying closer attention to these

aspects in AI and ML models. An EY white paper underscores the

concept of responsible AI, positioning it at the heart of trustworthy

AI systems, surrounded by various critical factors, with today's

focus being specifically on model performance.

Figure 2: EY’s Five Attributes of Responsible AI

Dashboards enable Dynamic MRM

Dashboards have become a pivotal tool in managing model risk by

providing real-time insights and acting as an early warning system

for model performance issues. They enable the detection of data

drift and help ensure fairness, confirming that models operate

without bias. They offer a centralized view of performance and

risks and help organizations coordinate responses to issues that

may affect not just a single model but a suite of interconnected

models, thereby mitigating the risk of uncoordinated actions that

could impact model integrity and business operations.

Figure 3: A Centralized View Dashboard of Performance

and Risks

https://www.bankofengland.co.uk/-/media/boe/files/prudential-regulation/supervisory-statement/2023/ss123.pdf
https://assets.ey.com/content/dam/ey-sites/ey-com/en_gl/topics/digital/ey-how-do-you-teach-ai-the-value-of-trust.pdf

00000v01

© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a l ist of additional trademarks.

Other product or brand names may be trademarks or registered trademarks of their respective holders.

Timely Alerts Mitigate Risk by Prompting

Immediate Action

Automated alerts are crucial for timely interventions in model

monitoring, ensuring that any deviations or issues are addressed

promptly within the governance and development processes.

Embedding these alerts into model risk management allows for a

proactive approach to maintaining model integrity. Dashboards are

useful tools for monitoring, but their effectiveness is contingent on

active observation. Automated alert systems are necessary to

notify relevant stakeholders for immediate action. These systems

should facilitate not just the production but also the consumption

of alerts, such as those indicating model bias or data drift. The

incorporation of a comprehensive observability framework, as

illustrated by the integration of microservices, Kubernetes, and

cloud infrastructure with an Open Telemetry Collector in the

system architecture, enhances the precision and scope of such

alerts (Figure 4). The alerts can trigger various responses, like

recalibration or redevelopment of models. This approach

completes the model risk management lifecycle, ensuring models

remain accurate and reliable. This overview emphasizes the shift

from viewing model monitoring as a periodic check to recognizing

it as a continuous, integral process that drives improvements

through timely alerts.

Figure 4: Cloud Observability with Open Telemetry

Enhancing Trust in Models through Drift and

Fairness Monitoring

Drift refers to the changes in data patterns over time, which can be

sudden or gradual (Figure 5), affecting the model's performance. It

is essential to detect and adjust for these changes to ensure the

model's current relevance. Fairness, on the other hand, involves

assessing the model's decisions across different groups,

potentially divided by protected attributes like gender or race, to

ensure unbiased outcomes. By actively observing and addressing

both drift and fairness, one can significantly improve the integrity

and fairness of their models, thereby fostering greater trust in their

applications.

Source: https://arxiv.org/pdf/2004.05785.pdf

Figure 5: An Example of concept drift types.

Example: NYC House Price Data

Figure 6: NYC House Prices 2015

The New York City House price dataset for 2015 presents a classic

structure where each row represents an observation and each

column stands for a variable, with a mix of categorical and numeric

types. Notably, the 'sales date' column introduces a temporal

element, marking when each observation occurred. In building a

machine learning model, it is common to treat each row individually

and initially disregard the 'sales date', which can be a reasonable

starting approach. However, if the variables' distribution shifts over

time, and 'sales date' is the only temporal indicator, the model may

be prone to drift. This highlights the importance of considering

temporal changes, especially when predicting binary outcomes like

whether a property was sold, to ensure the model remains robust

over time.

Continuous Monitoring Protects Against

Model Decay

We will start by training the model, followed by careful observation

to identify any issues that arise during its operation. Once problems

are detected, the final step is to implement corrective actions to

rectify the performance issues.

https://arxiv.org/pdf/2004.05785.pdf

00000v01

© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a l ist of additional trademarks.

Other product or brand names may be trademarks or registered trademarks of their respective holders.

Figure 7: Data Drift Three Steps Forumula

The Classification Learner App is a great asset when it comes

to model training within MATLAB. After loading our model into the

app, it meticulously processes the datasets, applying rigorous

best-in-practice techniques like cross-validation, which are

instrumental in mitigating the risk of overfitting. This ensures that

the model's predictive power is genuine and not just an artifact of

the noise within the training data. While we work under the

assumption that our model is stationary, the Classification Learner

app aids us in efficiently building a simple decision tree. This

decision tree, though fundamental in structure, is optimized for

performance by the app's algorithms and user-friendly interface,

which simplifies the complexities of machine learning workflows.

The app's value lies in its ability to not only develop models but

also to understand and improve them interactively.

Figure 8: NYC Sales Prediction Model

The analysis involves assessing the accuracy of a model in

predicting house sales on specific dates, acknowledging that the

housing market is unpredictable with a noisy signal but exhibits a

clear trend. The model's accuracy, initially around 73%, appears to

decline over time. To address this, a strategy called incremental

machine learning is suggested, where new data is periodically

added to the model to maintain its relevance. Additionally,

weighting can be applied to give more importance to recent data,

as part of a strategy to adapt the model to changing market

conditions.

Figure 9: NYC Sales Prediction Model with Updated

Weekly Accuracy

An updated model was applied to the same dataset after the

original model experienced significant drift and exceeded

acceptable thresholds. The model was retrained, leading to an

immediate improvement in accuracy, which was maintained over

time. Corrective actions taken in Week 40 ensured that the model's

performance by the end of the year remained stable and less prone

to data drift, sustaining its original performance level.

In Summary, the workflow discussed involves a three-step process

for managing a binary classification model:

1. Determine the metric to measure, which in this case is the

accuracy of the model's predictions.

2. Establish a threshold for action; if the model's accuracy falls

below 73%, it triggers a retraining of the model.

3. Once the model is retrained due to a significant drop in accuracy,

it is redeployed, resulting in improved performance.

Instrumentation and Alerting in Model

Production

Figure 10: NYC Housing Predictive Analysis and Real-

Time Data Fluctuations

To ensure models perform well in production, they are

instrumented with metrics that can alert developers to issues such

as data drift. Using tools like MATLAB, models can be set up to

send metrics to databases, allowing for real-time monitoring. For

instance, if data drift is detected, the model can be adjusted to

https://www.mathworks.com/help/stats/train-classification-models-in-classification-learner-app.html

00000v01

© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a l ist of additional trademarks.

Other product or brand names may be trademarks or registered trademarks of their respective holders.

smooth out the noisy signals and set thresholds to trigger alerts.

Modelscape, a Model Risk Management solution, supports various

databases and allows developers to experiment with alerting

systems before deployment. Alerts can be configured to notify the

appropriate teams, and strategies for handling multiple or false

alerts include grouping similar alerts and suppressing or silencing

known issues. It's also important to consider external factors

affecting model performance, such as system utilization and

execution delays, which underscores the need for a

comprehensive approach to model monitoring that extends beyond

the development phase.

Integrating DevOps in AI/ML Model Monitoring

When analyzing time series data for spikes that may impact model

performance, it's essential not only to consider model-specific

metrics, such as drift and fairness but also the operational aspects

like execution time and data throughput. This requires a

comprehensive DevOps infrastructure that continuously monitors

and measures model properties over time. Model developers are

tasked with creating the necessary instrumentation within their

models and collaborating with DevOps teams to ensure these

models are integrated into a larger monitoring platform. Tools like

Prometheus can be used to collect telemetry data, allowing for

real-time queries about model performance. Companies like

MathWorks offer solutions like Modelscape to facilitate this

process. Ultimately, the observability of models—a concept

borrowed from DevOps—combines both instrumentation and

telemetry, enabling DevOps teams to monitor models effectively

and provide valuable feedback to business users and developers,

aligning with model governance and development protocols.

Modelscape Solution

Figure 11: MathWorks Modelscape Dashboard

Modelscape allows for an organization-wide overview of all

models, enabling the creation of dashboards for high-level insights

and the ability to delve into specific models for detailed analysis.

The system integrates alerts from the monitoring system, flagging

issues for models pending approval and for those in operation.

Each alert can be assigned a creation date and severity level,

either automatically or through manual review, and tracked within

the model governance process. This process determines whether

a model should be adjusted or completely redeveloped. Model

monitoring thus serves as a crucial feedback mechanism,

informing governance and development to enhance model

performance, relevance, and fairness.

Finally: Ensure the Health and Fairness of

Deployed Models using Modelscape

MathWorks has developed Modelscape, a comprehensive solution

that tackles the challenges of model fairness and data drift.

Modelscape Monitor offers out-of-the-box features such as

threshold setting, alerts, and dashboard creation for performance

review. It supports model refinement based on production data and

informs governance decisions, like whether to update or retire

models. Additionally, Modelscape aids the entire modeling

lifecycle, including validation in live environments, preproduction

testing, and deployment. This holistic monitoring strategy

enhances risk management and operational efficiency.

Figure 12: Model Risk Management Lifecycle

» Learn more: mathworks.com/modelscape

https://www.mathworks.com/solutions/finance-and-risk-management/model-risk-management/model-risk-management-lifecycle.html?s_eid=EML_24406

	Model Monitoring: A Necessity, not a Choice
	Advancing Model Integrity with Fairness Metrics and Drift Detection
	Dashboards enable Dynamic MRM
	Timely Alerts Mitigate Risk by Prompting Immediate Action
	Enhancing Trust in Models through Drift and Fairness Monitoring
	Example: NYC House Price Data
	Continuous Monitoring Protects Against Model Decay
	Instrumentation and Alerting in Model Production
	Integrating DevOps in AI/ML Model Monitoring
	Modelscape Solution
	Finally: Ensure the Health and Fairness of Deployed Models using Modelscape

