CEV Flight Dynamics Team

A

To: Distribution Document Number: FItDyn-CEV-08-148

From: Joel Henry - ORION GN&C Software Functional Manager
Subject: Orion GN&C MATLAB/Simulink Standards (SIA Action #2)

Date: October 1%, 2011

Executive Summary

This document satisfies Action #2 of the GN&C Flight Software (FSW) Structured Improvement
Activity (SIA) project and represents the efforts of the MATLAB/Simulink standards splinter
group formed soon after the SIA event.

The MATLAB/Simulink standards splinter group was tasked to define an initial version of the
MATLAB/Simulink guidelines and standards. These standards and guidelines are to be used in
the GN&C Flight Software (FSW) algorithm development effort by each of the GN&C MODE
teams.

(Signature of Author)
Joel Henry
ORION GN&C Software Functional Manager
NASA/JSC

Orion GN&C
MATLAB/Simulink Standards

Version 15
October 1%, 2011GN&C Structured Improvement Activity/LM21 Project Team

REVISION HISTORY

Ver.

Date

Originator

Description

0.0

07/19/08

CSDL/lan T. Mitchell

1.0

09/02/08

CSDL/lan T. Mitchell

Added memo format.

2.0

11/03/08

CSDL/lan T. Mitchell

Feedback from splinter group.

3.0

12/03/08

CSDL/lan T. Mitchell

Splinter group review.

4.0

04/09/09

CSDL/Joel Henry

Further splinter group review and feedback from the Entry Pathfinder
project

5.0

04/15/09

CSDL/Joel Henry

Minor corrections

6.0

4/30/2009

CSDL/Joel Henry

Added ORION specific naming standards for models, m-files, and root-
level buses

7.0

7/15/2009

CSDL/Joel Henry

Minor corrections and clarifications

8.0

11/17/2009

CSDL/Joel Henry

Added/modified standards based on lessons learned from the
Entry/Orbit/Ascent Translation process

9.0

11/1/2010

NASA/Joel Henry

*Added MA Check field to every standard to indicate whether an
automated Model Advisor check exists for this standard

Updated the following standards:

e jh_0070: Model Configuration Settings
e jh_0109: Merge Blocks

e jh_0042: Required Software

Added the following standards

mj_0001: CSU Input Bus Naming

jh_0111: Bus Ordering and Alignment

jh_0117: Shared CSUs Across Domains

jr_0001: Use of Atomic functions for Subsystems
mj_0002: Junction Box Composition

jy_0010: Graphical Functions

jr_0002: Number of nested if/for statement blocks

Removed the following standards
e db 1037: States in state machines

10.0

NASA/Joel Henry

Added the following standards

e dm_0001: Signal and Bus Element Naming Convention
Updated the following standards:

e jh _0006: Setup files for bus initialization

e hyl 0204: Standard Units

11.0

NASA/Joel Henry

Updated the following standards:
e dm_0001: Signal and Bus Element Naming Convention

12.0

4/11/2011

LM/David Shoemaker
NASA/Joel Henry

Added the following standards

e jph_0010: Use of Masks

Updated the following Standards:

e dm_0002: Enumerated Types Usage

dm_0003: Enumerated Types Header Files
dm_0004: Enumerated Types RTW Settings
dm_0005: Enumerated Types Description
jr_0003: Enumeration Name Convention

ek _0002: Recursive Functions (changed to mandatory)
Removed the following standards

e jh 0055: Use of Masks (replaced with jph_0010)

13.0

5/5/2011

NASA/Joel Henry

Added the following standards
e jh_0202: Testable Unit
e jh 0200: Guidelines for Managing Model Complexity

e jh 0201: eML Function Types
e jr_0004: Error Handling
Removed the following standards
hyl_0206: Only Boolean inputs to encoder blocks
jr_0001: Use of Atomic Functions for Subsystems
jh_0001: Use of ARINC blocks for partition to partition data flow
jh_0005: Setup files for model parameter initialization
jh_0006: Setup files for bus initialization
bd_0137: States in state machines
jy_0010: Graphical Functions
hyl_0208: Prevention of divide-by-zero
hyl_0209: Prevention of negative square root
hyl_0203: Model Publishing
jh_0011: Model release
pdated the following Standards:
jh_0042: Required Software
jh_0079: Model and Matlab Filenames
na_0004: Simulink model appearance
na_0004: Port block name visibility in Simulink models
jm_0010: Port block names in Simulink models
dm_0001: Signal and Bus Element Naming Convention
hyl_0301: Block naming convention
db_0112: Indexing
db_0144: Use of Subsystems
jh_0049: Use of Model References or Reusable Subsystems
jph_0010: Use of Masks
na_0012: Use of Switch vs. Case vs. If-Then-Else Action
Subsystem
e db_0116: Simulink patterns for logical constructs with logical
blocks
e jr_0001: Enumeration Name Convention
e na_0006: Guidelines for mixed use of Simulink and Stateflow
na_0007: Guidelines for use of Flow Charts, Truth Tables and State
Machines
im_0001: Guidelines for mixed use of Simulink and eML
im_0008: Source lines of eML
im_0009: Number of called function levels
jh_0110: eML Function Reuse
jh_0029: m-files
jh_0030: Extrinsic function
jh_0073: eML Header
Modeling Guidelines Chart

® 6 6 6 o6 o6 06 06 O 6 o O (O o o o o 0 0o 0o o o o

14.0 9/1/2011 NASA/Joel Henry Added the following standards
e jh_0050: Model References Simulation Mode
e jh_0052: Directory Structure
Updated the following Standards:
e dm_0001: Signal and Bus Element Naming Convention
e jc_0141: Use of Switch block
e jh_0021: Restricted Variable Names
15.0 10/1/2010 | NASA/Joel Henry Added the following standards

e do _0001: Declaring Local Variables in eml
Updated the following Standards:
e jh 0064: eML if statement

TABLE OF CONTENTS

TABLES ... e et e e tr e e anr e e anes viil
ABBREVIATIONS AND ACRONYMS ...ttt viii
R N 2 (@ 1516 1O I []\ SR 1
2 RELATED DOCUMENTATION. ...ttt ittt 1
2.1 APPHCADIE DOCUMENTS.....c..itiitiiieiiieiieee ettt 1
2.2 INFOrMation DOCUMENTSccueitiiiiiiieiieieie ettt e bbb besneens 1
3 PURPOSE AND DESCRIPTIONttt 1
4 STANDARDS ... 2
4.1 SYStEM REQUITEMENTSvviiieiieiie ettt sttt sttt see st e te st e sbeebe s e sbeenaesreesreennens 2
411 JN_0042: ReQUITEU SOTIWATEoveiie ettt sttt e et bt beene e e e b e neesae et 2
4.1.2 JD_0043: Approved PIatfOrMS..........coi i bt sae s 3
4.2 File and Directory Naming CONVENTIONS..........cccueiuiiieiieieiiesrese e seesie e e seesseenee s 3
4.2.1 Vg 00 1= T U 1 S 3
422 jh_0079: Model and Matlah FIlENamMES........cvoiiiiiiriie et eas 4
423 Ar_0002: DIFBCIOIY NAMES.......eiuiereeeeiesiesteseeteereeseesieseestesteaseeseeseestestestesteaseaseensessessesseseeasesseenseseessessenes
424 JN_0052: DIFCLONY SEIUCLUIE.c.viii e stieieeiieteesie ettt se ettt se e e st e besbesbesreeneeseeeeneeseeneas
4.3 SIMUIINK c.ceieecc ettt ettt et be st e bt e st e s e eenbenbesbenbenreas
43.1 (DT T = Ly Y o] o LoT T g Lo USSP
4.3.1.1 na_0004: Simulink model appearance
4.3.1.2 jh_0007: Blocksinamodel..........cccooooreiiniinninnennn.
43.1.3 db_0043: Simulink font and font size
4.3.1.4 hyl_0103: MOGEI COION COUINGcuviviriiiiiiteiisicie bbbt
4.3.2 Model ConfigUIation OPLIONSc.viiiiiiiriiice ettt
4321 jh_0070: Model Configuration SELHNGSceiireirieiiieiiesese e s
433 1 ToTo L= I o TNy q=Ta] v o] o PSSR
4.3.3.1 hyl_0112: Title ON €ACKH PAGEevvivereieiiieteeie ettt ettt sttt ettt ne ettt es
4.3.3.2 hyl_0113: NOLES ON BACH PAGEvvereeeririeteriatenieteestetesie e seateseste e steseseetesestessete e st ene b ebeseabensebeseeteneebeneseeseneenesen
4.3.3.3 hyl_0202: Use of revision/trace block............cc.cccervrunnee.
4.3.34 hyl_0114: Documentation of deviations to standards
434 INPOIES ANT OULPOTES. ...ttt bbb bbbt bbbt bbb bbb et b
4.34.1 jc_0211: Usable characters for Inport block and Outport bBIOCK.............ccoiiiiiiininiie e 14

4.3.4.2 mdb_0042: Port block in Simulink models
4.3.4.3 na_0005: Port block name visibility in Simulink models....

4344 jc_0081: Icon display fOr POrtBIOCKcoviiiiieiiiii s
4.3.45 jm_0010: Port block names in SIMUlinK MOGEISccooiiiiiiiiiiiiee s
4.34.6 jh_0018: Variable tYPe CASLING........coeririeiiieieiiite ettt b e bbbttt st b e b e et ene e
435 SIGNAIS BN BUSES ...ttt bbb bbb bbbt b et
4351 jc_0221: Usable characters for Signal liN€ NAMEcouciiiiiiiiiiiiece e
4.35.2 jh_0040: Usable characters for Simulink Bus names
4.35.3 bn_0002: Signal name length limitcccccooerinininnns
4.35.4 jh_0041: Simulink Bus Name Length Limit
4.35.5 Jh_0051: SIMUINK BUS FOIMALciiiiiiiiitiiiiiiieesieiee ettt
4.35.6 dm_0001: Signal and Bus Element Naming CONVENTIONcoviiiiiiiiniiiiineesece s
4.35.7 mj_0001: CSU Input Bus NamMingccoervvernerenerinnenens
4.3.5.8 jh_0111: Bus Ordering and Alignmentc.cocervvvenenn.
4.35.9 jh_0117: Shared CSUS ACI0SS DOMAINSceiuiiuiriiieieieieait ettt sttt bbbt sbe st st b e e eseeneene e
4.35.10 na_0010: Grouping data floWS iNtO SIGNAIS........cceriiiiiiii e
435.11 na_0009: Entry versus propagation of signal 1abels.............cccoiiiiiiiiiiii e
4.35.12 hyl_0311: Naming of signals passed through multiple subsystems .31
4.35.13 na_0008: Display of 1abels 0N SIgNaIS..........cvriiiiiiiic e 32
4.35.14 db_0097: Position of labels for signals and buses ... 33
4.3.5.15 hyl_0110: Branching line format............ccccoceovrvennnns ...34
4.3.5.16 mdb_0032: Simulink Signal APPEATANCEccvviriiieirieiree et ... 35
4.35.17 db_0081: Unconnected signals, block inputs and block OUtPULS...........ccocveriiiriieiiiiinccene ... 35
4.35.18 JN_0061: USE OF PATAMELELScueiuiitiiteiteieiieie ettt sttt b e bbb e et et e ebesbesbesbe e eneereanea 36
4.3.6 BIOCKS. ..ttt bbb bR R R R R bRt b bt b et b et 37
4.3.6.1 hyl_0302: Usable characters for BIOCK NaMESccuiiiiiiiiiiiiiie ettt e 37

\Y

4.3.6.2 hyl_0305: BIOCK NAME UNIGUENESSeeeieiuietiitietesteeteseeeeiee et sieste e ee st eseebesbesbeseesbe e ansesesseabestesbeseeeeseeneasees 38

4.3.6.3 hyl_0309: BIOCK NAIME USAGEveviteeeieeeiietesie st stesteseese ettt stestese e e e eseebeabesbeseesbeseensebeaseebesbeabeseeneeseaneasens 39
4.3.6.4 jh_0062: Constant BIOCK NAIMINGoouiiiiiii ettt ettt b b et e e e 39
4.3.6.5 JM_0002: BIOCK FESIZING ..cuvevviviiieiiiiteitestetet ettt sttt be st e st e s b et e s e ssete e b e st e sa et e s esseteebeetesbe st e e ensesaaneate e 40
4.3.6.6 db_0142: Position 0f BIOCK NAMESc..oiviiiiiiiicectecte et sttt e e ene s 40
4.3.6.7 jc_0061: Display Of BIOCK NAMESccviiiiiiieieiicisteie ettt sttt b et st e s b r et e e ne et 41
4.3.6.8 db_0140: Display of basiC DIOCK PArameters............ccceviiieiiiiiiiiiesesee et st 42
4.3.6.9 mdb_0141: Signal flow in SIMUIINK MOAEISccoiiriiiiiii e 43
4.3.6.10 jc_0171: Maintaining signal flow when using Goto and From blOCKS.............cccccvereiiiiiniiiiene e 43
4.36.11 jc_0281: Naming of Trigger Port block and Enable Port DIOCKcccovoiiiiiiiiieee e 44
4.3.7 2] (ool QU= To OSSN 45
4.3.7.1 hyl_0201: Use of standard library BIOCKS ONIYccooiiiiiiiiii e 45
4.3.7.2 jh_0101: Use of Right-Handed QUAtErNIONS ONIYcviiiiiiiiiiieiee e 46
4.3.7.3 na_0003: Simple logical expressions in If Condition BIOCKccccecveiiiiiiiiiiiicc e 46
4.3.7.4 na_0002: Appropriate implementation of fundamental logical and numerical operations..............c.ccccceveuvnenn. 48
4.3.75 na_0011: Scope of Goto and From BIOCKSc.ciiiiiiiiiieiiice ettt s 49
4.3.7.6 jc_0141: Use 0F the SWILCH DIOCK........c.coviiiiiiiiiiiiccie ettt 50
4.3.7.7 hyl_0207: Limiting input t0 MUItIPOIt SWILCRESccuiiiieiiieere e 52
4.3.7.8 jc_0121: Use OF the SUM BIOCKccuoiiiiiiiieiec ettt ettt 52
4.3.7.9 jc_0131: Use of Relational Operator DIOCKcccoiiiiiiiiiieisicee s 54
4.3.7.10 hyl_0211: Prohibit USe Of tESt POINTScirieiiieiie e 54
43.7.11 JN_0109: MEIGE BIOCKS......cueeieiieieieteniete sttt sttt ettt ettt et sa s e st ene b ebe e beneebereneenenas 55
4.3.7.12 MjC_0111: Direction Of SUDSYSIEM..........ciiriiiiiiiiciecriee ettt neene e 55
4.3.8 2] (ool o =T 1]] OSSR 56
4.3.8.1 AD_0T12: INAEXING 1.vveeererieieieienisieesietesiete ettt et sttt e sttt ssese st ebese b e e e be e esene b ebeneabentebe e et enesbeneneereneene s 56
4.3.8.2 db_0110: Tunable parameters in DasiC BIOCKS...........ccciieiriiiiiiirec s 58
4.3.9 SUDSYSTEIMIS ...ttt bbb bbb bbb s bbbt bbbt bt b 59
4.3.9.1 jc_0201: Usable Characters for SUDSYSIEM NAMEScccoviiirieirieiriee ettt 59
4.3.9.2 bn_0001 Subsystem name [ength TIMitccoeiiiiiiii s 60
4.3.9.3 hyl_0307: USe Of SUDSYSIEM NAMEcuiiiiiiiiiiiteirteie ettt 60
4.3.9.4 dD_0144: USE OF SUDSYSIEMSoveiiieiiietiistei sttt bbbttt 61
4.3.9.5 jh_0049: Use of Model References or Reusable SUDSYSEMS..........ccovieiiieiiiiieiene e 61
4.3.9.6 jh_0050: Model References Simulation IMOTEccoveiriiiiririneee e s 63
4.3.9.7 db_0146: Triggered, enabled, conditional SUDSYSIEMScccoeiiiiieiiiciee s 65
4.3.9.8 JPN_00T10: USE OF IMASKS...... oottt ettt sttt ettt ene bt et e et s 66
4.3.9.9 hyl_0308: Use of reference Model NAMEccoeiiiiieieniese e 68
4.3.10 SUDSYSIEM PAITEINS ...ttt bbb bbbttt bbbt b e 69
4.3.10.1 na_0012: Use of Switch vs. Case vs. If-Then-Else Action SUDSYSIEMcccoeriieiiiiiiniiiiene e 69
4.3.10.2 db_0114: Simulink patterns for 1f-then-else-if CONSLIUCES...........ccoeiriiiieire s 72
4.3.10.3 db_0115: Simulink patterns for Case CONSIIUCES.ccoiviiiiieiriciiee s 73
4.3.104 bn_0003: Use of If-Then-Else Action Subsystem to Replace Multiple SWitches............ccccocerviiicininnnns 75
4.3.105 db_0116: Simulink patterns for logical constructs with logical blocks.............cccoeiiiiiniciiie 77
4.3.10.6 db_0117: Simulink patterns for VECIOr SIgNAIS.........c.couiiiiiiiiie s
4.3.10.7 j€_0351: Methods Of iNItIAlIZATIONcoueiiiiiiie e e
04 I R o U1 11T = 4T LSS
43111 dm_0002: ENUMErated TYPES USAGEc.viuiriirtirierieieieiieieeie sttt ettt be bbb ans
43112 dm_0003: Enumerated Types Header FIlEScooiiiiiiiiiiiiee e
4.3.11.3 dm_0004: Enumerated TYPeS RTW SEIINGS.couiiiiiiieiiiiisiei ettt
43114 dm_0005: Enumerated TYPeS DESCIIPLIONcviiririiiiiieisieiniee e
43115 jr_0003: Enumeration NamMe CONVENTIONcoviiiiriiiieirieiesieie sttt
Y (oTo (o] N ol o (=Y od (| - S
441 Simulink®, eML, and Stateflow® Partitioningco.ovovuiveereieeeeeseseeeeee s
4411 Jh_0202: TESIADIE UNILSeiiiiieieiiieite ettt bt bbb et b e bttt s b b e e e s e ne e e
4.4.1.2 na_0006: Guidelines for mixed use of Simulink and Stateflow
4413 na_0007: Guidelines for use of Flow Charts, Truth Tables and State Machings...........cccccevvveveriviveveeresieennn, 93
4414 im_0001: Guidelines for mixed use of SIMUlINK and MLcccoooiiiiiiiiniec s 93
4.4.15 jh_0200: Guidelines for Managing Model COMPIEXILYooieiriiiriiiiisere s 96
4416 ek _0010: Simulink algorithm States reCOmMMENTALIONScoviiiiiiriiie s 97
4.4.2 SUDSYSLEM HIBFAICNIES. ... ceiieieie et bbbttt bbbttt see e e 98
4421 mdb_0143: Similar block types on the Model 1EVEIS...........cooiiiiiiiii s 98
443 ORION GN&C Model Architecture DECOMPOSITIONciviiuieiiiiie sttt 99
4431 im_0015: ORION GN&C MOdel ArChItECIUIEc.civiviieiiiiiiirieise e 99
4432 im_0003: CONroller MOGELc.oiviiiiitiisieee bbbt 100

4433
4434
4435
4.4.3.6
4437
44338

45 Stateflow

45.1
4511
4512
4513
4514
4515
45.1.6
4517
4518

45.2
4521
4522
4523
4524
4525
45.2.6
4527
45.2.8
45.2.9

45.2.10

453
4531
4532

454
4541
4542

455
4551
4552
4553
4554
4555

46.1
4.6.2
4.6.3
4.6.4
4.6.5
4.6.6
4.6.7
4.6.8
4.6.9
4.6.10
4.6.11
4.6.12
4.6.13
4.6.14
4.6.15
4.6.16
4.6.17
4.6.18
4.6.19
4.6.20
4.6.21

iM_0004: TOP layer / FOOL TEVEL ...ttt b e se e ne e eneene
im_0005: Trigger layercccoeoieereneieieeeeeeee e
im_0006: Structure layer..........ccccoovvieneneieeese e
mj_0002: Junction Box Composition..........ccccecvvrerienne
im_0007: Data flow layer...........c.ccceevveviiericiiceiesene
JN_0056: SAMPIE TIMES.....iitiitiitiiteitei ettt bttt e et et e e be e te s b e st e s e et e s ensetaebeebe st e sbe s enseseenearens

(@8 g F= T AN o] 1= 1 [o BSOS
db_0123: StateflOW POt NAIMESoiuieiieiet ettt sttt e et e s bt besbesbesee e e e eneeneee
db_0129: Stateflow transition appearance.......................
db_0133: Use of patterns for Flowchartscc.cc.o.....
db_0132: Transitions in Flowcharts..............cccooeeiinnenne

mjc_0501: Format of entries in a State block

jc_0511: Setting the return value from a graphical funCLioNc.ccoceviiieiiiccce e
jc_0531: Placement of the default tranSitioncc.ooviiiiiiie e
jc_0521: Use of the return value from graphical fuNCHIONSccooiiiiiiiiii e
Stateflow data and OPEIAtIONScc.cceieiiiieeieie et et st e st e e e e e e e stesrenrens
na_0001: Bitwise StatefloW OPEIAtOrS.coueiiiiiiiiie ettt enas
jc_0451: Use of unary minus on unsigned integers in Stateflow...........ccccoviiiiiniiiici e
na_0013: Comparison operation in StAteflOW ..o

db_0122: Stateflow and Simulink interface signals and parameters

db_0125: Scope of internal signals and local auxiliary variables...........cccccoeovinieiinninnieinecee e

jc_0481: Use of hard equality comparisons for floating point numbers in Stateflow

jc_0491: Reuse of variables within a single Stateflow SCOPEcccoeiriirieie s

jc_0541: Use of tunable parameters in Stateflow
db_0127: MATLAB commands in Stateflow

JM_0011: POINLErS IN STALETIOW.eviuiieiiiciese e

Events....

AD_0126: SCOPE OF BVENTS ...ttt bbb bbbt bbbt
JM_0012: EVENE DrOAACASESe.veveieieiiieiesieie ettt ettt ettt ettt et s
SEALECHAIT PALIEINSeiee ettt st et e e et stestesreeneeneeeentenrens
db_0150: State machine patterns for CONAITIONS.ccooiieiiriie e
db_0151: State machine patterns for transition aCtIONS..........cc.ccvreeririiiee e
[(01T = U o1 1=T o L PSR
db_0148: Flowchart patterns for CONQITIONS...........cc.oeirieiiieierriee e

db_0149: Flowchart patterns for condition actions

db_0134: Flowchart patterns for If constructs.................
db_0159: Flowchart patterns for case constructs
db_0135: Flowchart patterns for l00P CONSIIUCTSccueveiiiiiiiieseie e

4.6 Embedded MATLAB (EML) ..o

jh_0201:

im_0008:
im_0009:

jr_0002:
jh_o110:

im_0010:

jh_0063:
jh_0021:
jh_0064:
jh_0023:
jh_0024:
jh_0025:
jh_0026:
jh_0027:
jh_0029:
jh_0030:

ek _0002:
ek _0003:

jh_0073:
jh_0093:
jh_0084:

EML FUNCLION TYPES ...ttt bbbt bbbt
SOUNCE HINES OF BIMIL ...ttt ettt e e et e e e et e e st e e s etb e e e s sraaessarbeeeas
Number of called fFUNCLION TEVEISoeeeieeiee et
Number of nested if/for statement DIOCKScoovvieiiceiie e
EIML FUNCHION RBUSEveiiiiiiii ettt ettt e et e e st e e e s st a e e s ebba e e s sares
Number of inline fuNCLION CAllS..........ccuviiiiiii e
ML block iNPUL/OULPUL SEHEINGS ..o.veeveiieciecieste e
Restricted Variable NAMESccuvviiiiiii ettt e st e s ebe e e s sbae e
LAY, L) ¥= L =) 01T |
F N - 1T STV PR PRI
ST IIgS ettt bbb bbbttt e
RO (0103 10 =TSR
SWILCN/CASE SLALEIMENTSeeeeevie ettt ettt e et e e e et e e st eeser et e e setneeessreeesserreeeserreeesrnees
MUILIPIE COUE PALNSocviiiiiiieieicte ettt sb b
LA 1] 1= TR PP
L A T ToR (] ot (o] o R
RECUISIVE TUNCLIONS ...ttt sttt s e st e e s st e e s s b ae s e s bt ae e s sbaeee s
(1 (o)L Y= g F= 1 o] [P
LAY, =TT (=] TR
Parameter BUS TOr BIMILcoiiiiii ettt ettt st e s ebt e e s sae e e s sbaee s
EIML COMIMENTS ...ttt ettt e e e e s e s bbb e e e e e s s e ab bbb e e e e essssabbbeseeesesssanres

4.6.22 do_0001: Declaring Local Variables in €MLccccvvviviieieereie e see e snen 149
4.7 Code Development Standardsccooveeiiiriineiie e 150
4.7.1 NYI_0204: STANAAIT UNITS......cuiitiiiiiitiieeiete ettt b et b e sr bbb b sne e 150
4.7.2 Jr_0004: Error HANAIING «..c..cvoveieiiiicisteseeest ettt sttt sn e nne e 152
4.8 Configuration ManageMENT...........ccoiiriiiiiiiieee e 152
48.1 jh_0004: MATLAB artifacts under configuration CONtrolcccoeiiiiiiiinciic e 152
T o] 1< 0 [G USSR 1
5.1 Modeling GUIAEINES ChaITccuoiiiiieeiie e 1
5.2 Configuration SELHINGSc.eiueiieii sttt a e e sre e e e sreeee s 1
5.3 Model Advisor Standards Checks SUMMAIYccccoeiiiieiieienie e 1
5.4 Subsystem Masking Methods and GUIAEliNES...........ccccveveiieiieie i 5
TABLES
Table 1 - Applicable DOCUMENTSooiiiiiiiieiei ettt 1
Table 2 - INfOrmation DOCUMENTS..........uiiiiiieieieie ettt sbe b e 1

ABBREVIATIONS AND ACRONYMS

CEV
FDT
FSW
GN&C
UML
Csu
PSP
MAAB
SDP
eML

Crew Exploration Vehicle

Flight Dynamics Team

Flight Software

Guidance, Navigation and Control
Unified Modeling Language

Computer Software Unit

Pilot Support Package

Mathworks Automotive Advisory Board
Software Development Plan

Embedded Matlab

ARINC Avionics Application Standard Software Interface

SDK
MRB
V&V

Software Development Kit
Model Reference Block
Verification and Validation

viii

1 INTRODUCTION

This document describes the standards and guidelines that the Orion Crew Exploration Vehicle
(CEV) Flight Dynamics Team (FDT) will use while developing the Guidance, Navigation and
Control (GN&C) algorithms in the MATLAB/Simulink environment.

The GN&C algorithms developed in this manner will be delivered to the Flight Software (FSW)
team and C++ source code will be auto-generated and integrated with other flight software
components.

This standards and guidelines document has been developed using the Mathworks Automotive

Advisory Board (MAAB) guidelines document as a starting point with additions from the joint
Orion NASA/Contractor team.

2 RELATED DOCUMENTATION

2.1 Applicable Documents

This document is a child document to the Orion GN&C Algorithm Development Plan, which
specifies the overall plan for FDT development, testing and delivery of GN&C algorithms.

Table 1 lists the documents applicable to this MATLAB Standards document.

Table 1 - Applicable Documents

Reference No. Title

Control Algorithm Modeling Guidelines Using MATLAB®, Simulink®,
and Stateflow®, Version 2.0, MathWorks Automotive Advisory Board
(MAAB), July 27, 2007

CEV-GNC-11-014 GNC Model Development Cyclomatic Complexity Guidelines Memo
FItDyn-CEV-11-52 Error Handling and Logging Guidance

2.2 Information Documents

Table 2 - Information Documents

Reference No. Title
LM CEV-T-005 LM Software Development Plan (SDP)

3 PURPOSE AND DESCRIPTION

The purpose of this document is to define standards and guidelines for how the FDT will implement
and model their GN&C algorithms in the MATLAB/Simulink environment. Such standards will
foster consistency across all of the FDT’s five mode teams (Ascent Abort, Orbit, Entry, Navigation
and Integrated GN&C), and provide for tighter cohesion in the GN&C design, improve readability
and interpretation, and ultimately expedite module integration and testing.

The Priority field in each of the standards indicates the importance. The three priority types are
Mandatory, Strongly Recommended, and Recommended. The descriptions of each of these types
are below:

o Mandatory — flagged in inspection, must be fixed before any release (no schedule
relief, “shall”)

o Strongly Recommended, flagged in inspection, should be high-priority to fixing
before release, but —if resource limited — could be released in engineering releases,
but must be fixed prior to flight (i.e., there may be some schedule relief for fixing
this, is a “shall*) and required approval for acceptance.

o Recommended - flagged in inspection, not required fixed before release or flight.
(“nice to have”, or “guideline”, a “should”)

4 STANDARDS

4.1 System Requirements

4.1.1 jh_0042: Required Software

ID: Title jh_0042: Required Software
Priority Mandatory

Scope ORION

MATLAB See Description/Version
Version

MA Check |No

Prerequisites None

The minimum required software for use with the ORION GN&C FSW models is as
follows:

The use of blocks from Simulink toolboxes are prohibited for CSU development.

Description Software Version
Minimum Required for | Matlab 2010b SP1
Description Simulation at CSU level Simulink 2010b SP1

Stateflow 2010b SP1
C++ Compiler (ex. Visual Studio C++ 2008
for Win32)

Minimum Required for Those listed above

Simulation at Domain ~ ARINC PSP (Pilot Support Package) 2.1

Level

Required for Code Real-Time Workshop 2010b SP1

Generation Real-time Workshop Embedded Coder 2010b SP1

2

Required for Advanced
Model Analysis

Required for Running
Unit Tests

M Readability
M Workflow
M Simulation

Last Change V1.3

Rationale

Stateflow Coder

Trick PSP

Microsoft SDK (needed for ARINC PSP on
Win32)

Simulink Verification and Validation

System Test

M Verification and Validation
M Code Generation

4.1.2 jh_0043: Approved Platforms

ID: Title jh_0043: Approved Platforms
Priority Mandatory

Scope ORION

MA Check |No

Prerequisites None

The supported OS environments are listed below:

Windows 32-bit
Description |Linux 32-bit

2010b SP1
1.8
6.1 or later

2010b SP1

2010b SP1

Environments other than these are not compatible with the PSPs (Pilot Support
Packages) and the USA S-function utilities

M Readability
M Workflow
M Simulation

Last Change V1.1

Rationale

M Verification and Validation
M Code Generation

4.2 File and Directory Naming Conventions

4.2.1 ar_0001: Filenames

ID: Title ar_0001: Filenames
Priority Mandatory

Scope MAAB

MATLAB |All

Version
MA Check |Yes
Prerequisites None
A filename conforms to the following constraints:

FORM filename = name.extension
name: no leading digits, no blanks
extension: no blanks

UNIQUENESS all filenames within the parent project directory

ALLOWED name
CHARACTERS |abcdefghijklmnopqgrstuvwxyzABCDEFG
HIJKLMNOPQRSTUVWXYZ0123456789 _
Description extension:
abcdefghijklmnopqrstuvwxyzABCDEFG
HIJKLMNOPQRSTUVWXYZ0123456789

UNDERSCORES name:
e can use underscores to separate parts
« cannot have more than one consecutive underscore
e cannot start with an underscore
« cannot end with an underscore

extension:
o should not use underscores
M Readability [0 Verification and Validation
Rationale ™M Workflow O Code Generation

0 Simulation
Last Change V1.0

4.2.2 jh_0079: Model and Matlab Filenames

ID: Title [jh_0079: Model and Matlab Filenames
Priority Mandatory

Scope ORION
MA‘I_'LAB Al
Version

MA Check |No

Prerequisites None

The file names for the Simulink model files and embedded Matlab script files must
conform to the following guidelines:

Description | |CSU Simulink
model name <3 letter Domain abb.> <CSU abb.> CSU.mdl

Eml functions <3 letter Domain abb.> <CSU abb.> <function name>.m

stored as separate
*m files

“Model reference”
model used once
within a single
CSuU

“Model reference”
model used
multiple times
within a single
CSuU

“Model reference”
model used within
multiple CSUs in
single Domain

“Model reference”
model used within
a multiple CSUs in
multiple Domains

M Readability
Rationale ™M Workflow
O Simulation

Last Change V1.1

*Note: ALL separately stored *.m files (a.k.a “dot-M” files)
must have the eml.inline(‘never’); declaration (described in
jh_0202: Testable Unit)

<3 letter Domain abb.>_<CSU abb.>_<function name>_MR.mdlI

<3 letter Domain abb.>_<CSU abb.>_<function name>_MR.mdlI

<3 letter Domain abb.>_<abb of the CSU source>_<function name>_MR.md|I

*one of the CSUs will be the main source of the model — this is the CSU abb to
use in the naming

GNCLib_<function name>.mdl

*this model must reside in the GNC Shared Model Library

O Verification and Validation
O Code Generation

4.2.3 ar_0002: Directory names

ID: Title ar_0002: Directory names

Priority Mandatory

Scope MAAB
MA‘I_'LAB All
Version

MA Check |Yes
Prerequisites None

A directory name conforms to the following constraints:

FORM directory name = name
name: no leading digits, no blanks

Description

UNIQUENESS all directory names within the parent project directory

ALLOWED name:

CHARACTERS

abcdefghijklmnopgrstuvwxyzABCDEFG

HIJKLMNOPQRSTUVWXYZ0123456789 _
UNDERSCORES Iname:

can use underscores to separate parts

cannot have more than one consecutive underscore
cannot start with an underscore

cannot end with an underscore

M Readability [0 Verification and Validation
Rationale M Workflow OO0 Code Generation
[0 Simulation

Last Change V1.0

4.2.4 jh_0052: Directory Structure

ID: Title jh_0052: Directory Structure
Priority Mandatory

Scope ORION
MA‘I_'LAB Al
Version

MA Check |No

Prerequisites ar_0002: Directory Names
The directory structure for the ORION project shall mimic the example below:

Junction Box models should be placed in the following directory:
<3 Letter Domain> / <JBox_Name>.mdl

CSUs should be placed in the following directory:

I <3 Letter Domain>/ <CSU Name> / <CSU_Name>.mdlI

Description
CSU Memos should be placed in the following directory:
<3 Letter Domain>/ <CSU Name> / Memo

Unit Tests should be placed in the following directory:
<3 Letter Domain>/ <CSU Name> / Unit_Tests

O Readability O Verification and Validation
Rationale M Workflow O Code Generation
O Simulation

Last Change V1.0

4.3 Simulink
4.3.1 Diagram Appearance

4.3.1.1 na_0004: Simulink model appearance

ID: Title na_0004 Simulink model appearance

6

Priority
Scope

MATLAB
Version

MA Check
Prerequisites

Description

Rationale

Last Change

Recommended
MAAB

All

Yes
None

The model appearance settings should conform to the following guidelines when
the model is released. The user is free to change the settings during the

development process.

Note: The CSU_template.mdl file, included in the ORION Library, has the

recommended settings in place.

View Options Setting
Model Browser unchecked
Screen color white
Status Bar checked
Toolbar checked
Zoom factor Normal (100%)
Block Display Options Setting
Background Color white
Foreground Color black
Execution Context Indicator unchecked
Library Link Display none
Linearization Indicators checked
Model/Block I/0O Mismatch unchecked
Model Block Version unchecked
Sample Time Colors none
Sorted Order unchecked
Signal Display Options Setting
Port Data Types unchecked
Signal Dimensions unchecked
Storage Class unchecked
Test point Indicators checked
Viewer Indicators checked
Wide Non-scalar Lines checked
Simulation Setting
Simulation Mode Normal
M Readability O Verification and Validation
M Workflow O Code Generation
[0 Simulation
V2.2

4.3.1.2 jh_0007: Blocks in a model

ID: Title jh_0007: Blocks in a model

Priority Recommended
Scope ORION
MA‘I_'LAB All

Version

MA Check |No

Prerequisites None
Each layer of a model must be printable and readable on 11x17 size paper.

Description The use of the CSU_template.mdl file and the ORION library will enforce this
standard using borders.
M Readability 0 Verification and Validation
Rationale M Workflow O Code Generation

[0 Simulation
Last Change V1.2

4.3.1.3 db_0043: Simulink font and font size
ID: Title db_0043: Simulink font and font size

Priority Strongly recommended
Scope MAAB

MA‘I_'LAB All

Version

MA Check Yes
Prerequisites jh_0007: Blocks in a Model

All text elements (block names, block annotations and signal labels) except free text
annotations within a model must have the same font style and font size. Fonts and
font size should be selected for legibility.

Note: The ORION Library blocks adhere to this standard and do not need to be

Description changed.

Note: The selected font should be directly portable (e.g. Simulink/Stateflow default
font) or convertible between platforms (e.g. Arial/Helvetica 12pt).

Note: The CSU_template.mdl file, included in the ORION Library, has a Title text
box and Description text box that are of the recommended format.

M Readability [Verification and Validation
Rationale M Workflow [0 Code Generation
1 Simulation

Last Change V2.1

4.3.1.4 hyl 0103: Model color coding
ID: Title hyl_0103: Model color coding

Priority Strongly recommended
Scope ORION

MATLAB Al

Version

MA Check |Yes
Prerequisites None
The background color shall be set to:

a) Light blue for subsystems blocks
b) Orange for referenced models
c) Cyan for inport and outport blocks
d) Yellow for From, Goto, and Goto Visibility tags
e) Red for non-ORION Library blocks
(Colorspec RGB value = [1.000000, 0.501961, 0.501961])
f) White for Library blocks
g) Gray for Embedded Matlab Blocks
h) Light Brown for Domain level blocks (hon-CSU)
(Colorspec RGB value = [0.792157, 0.772549, 0.725490])
Note: The blocks in the ORION Library are set to the required background color

Example:
Description
(? W ini Ot Jevector bus 4@
Outt
@ P Iri2 = Wector_To_Bus
In2 rE - 2D
(30 plina 2 =g_ Otz
Iz M anual Switch m
Subsystem
sub_fon_mref
Outport
I | [
¥ inp
Sine Wiawe
Model_Reference | [signal] '
Embedded_MATLAB_Function
M Readability [Verification and Validation
Rationale O Workflow O Code Generation

[J Simulation
Last Change V2.1

4.3.2 Model Configuration Options

The model configuration options should be set to those indicated in the Appendix 5.1.

4.3.2.1 jh_0070: Model Configuration Settings

ID: Title jh_0070: Model Configuration Settings

Priority Mandatory
Scope ORION
MA‘I_'LAB All
Version

MA Check |No

Prerequisites |None

Each CSU must have the model configuration settings set to the configuration object
specified below — which are included in the latest version of the ORION Library.

CSUs: set to CSUCTgSet or CSUCfgSetMR
Junction Boxes: set to JBoxCfgSet
Domains and above: EmptyBoxCfgSet
Description
Note: These settings will ensure consistency and compatibility across all CSUs and
allow proper generation of autocode.

Note: The ORION Library includes the CSUCfgSet which is a configuration object
that complies with all of these settings. Also, the CSU_template model included in
the ORION Library uses this config file.

[0 Readability O Verification and Validation
Rationale O Workflow M Code Generation
M Simulation

Last Change V1.1

4.3.3 Model Documentation

4.3.3.1 hyl_0112: Title on each page
ID: Title hyl _0112: Title on each page

Priority Strongly recommended
Scope ORION

MA'I_'LAB All

Version

MA Check |No

Prerequisites None

10

Each page shall have a title. This allows pages to be easily identified when printed.

Example:

CSU Title

1 +
- gain_data
DORAIN_CSU_IN >+ zum_of_dat

Ini Ot 1

Mew_Function

Description
piteh 4pitch >
-
DDMAIH_CSUfF?EhTS
[Motes: Add notes explaining the functionality of this CSU||
Note: The title will not transfer to the autocode
M Readability M Verification and Validation
Rationale O Workflow O Code Generation

[0 Simulation
Last Change V2.1

4.3.3.2 hyl _0113: Notes on each page

ID: Title hyl 0113: Notes on each page

Priority Strongly recommended
Scope ORION

MA'I_'LAB All

Version

MA Check |No

Prerequisites None

Description

11

DOMAIN_CSU_OUT

At least one note should be placed on each page explaining the function contained on
that page. Additional notes should be placed on the page as needed. The goal is to

document each page with the rationale, assumptions, and intent of the design. The
notes should not contain algorithms. Instead, references should be made in the notes
to the algorithm specification.

Comments should not be index specific because the index used in the autocode may

differ.
Example:
CSU Title
; * {1
BOMAIN G5 IN b gain_data - ey Inl Outl DDMNU ot

Mew_Function

pitch

<piteh

= [PARAME]
params
DOMAIN_CSU_PRM [FARAME]

[Motes: Add notes explaining the functionality of this CSU||

Note: The notes will not transfer to the autocode

M Readability M Verification and Validation
Rationale 0 Workflow 0 Code Generation
[0 Simulation

Last Change V2.0

4.3.3.3 hyl_0202: Use of revision/trace block
ID: Title hyl 0202: Use of revision/trace block

Priority Strongly recommended
Scope ORION

MA‘I_'LAB All

Version

MA Check |Yes
12

Prerequisites None
Each model shall have a revision block that maintains a unique identification trace

tag, a version number which matches the version in the Configuration Management
system, modification date, and author.

This block is included in the ORION library as the Model_Info block. It contains
the following info:

e Author

e Date Modified

e Version and Instance (controlled by the CM Synergy database)
e CSU name

Description e Current System Name
e Parent system Name
This block is automatically included in the CSU_template.mdl and in all new
subsystems from the ORION Library.
Example:
ORION GNEC FS5ur Export Controlled
Author Lrate Modified: 05-Jun-Z009
wersion: 1.0.0 instance: 1
C5U: C5U_template
Systemn Hame: CEU_template | Farent Hame: Root
[0 Readability M Verification and Validation
Rationale M Workflow M Code Generation

O Simulation
Last Change V2.2

4.3.3.4 hyl_0114: Documentation of deviations to standards
ID: Title hyl 0114: Documentation of deviations to standards

Priority Strongly recommended
Scope ORION

MA'I_'LAB All

Version

MA Check |No

Prerequisites hyl 0113: Notes on each page

Description |Any deviations from the standards shall be documented in the notes.

M Readability M Verification and Validation
Rationale M Workflow O Code Generation
O Simulation

Last Change V2.0

13

4.3.4 Inports and Outports

4.3.4.1 jc_0211: Usable characters for Inport block and Outport block
ID: Title jc_0211: Usable characters for Inport block and Outport block

Priority Strongly recommended
Scope MAAB

MA‘I_'LAB All

Version

MA Check |Yes
Prerequisites None

The names of all Inport blocks and Outport blocks should conform to the following
constraints:

FORM name:
o should not start with a number
« should not have blank spaces
e carriage returns are not allowed

ALLOWED name:
Description |CHARACTERS |abcdefghijklmnopqgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789 _

UNDERSCORES name:
e can use underscores to separate parts
« cannot have more than one consecutive underscore
e cannot start with an underscore
« cannot end with an underscore

M Readability 0 Verification and Validation
Rationale M Workflow M Code Generation
0 Simulation

Last Change V2.1

4.3.4.2 mdb_0042: Port block in Simulink models
ID: Title mdb_0042: Port block in Simulink models

Priority Strongly recommended

Scope ORION (modified MAAB db_0042)
MATLAB All

Version

MA Check |No

14

Prerequisites None

In a Simulink model, the ports comply with the following rules:
e Inports should be placed on the left side of the diagram, but they can be moved
in to prevent signal crossings.
e Outports should be placed on the right side, but they can be moved in to
prevent signal crossings.
e Duplicate Inports shall not be used.
e Inputs and outputs should be left and right justified

Correct
——)
o > WL Ll
TQ_Req »Z)
Throt_Re:
VO2Cal
o @ TransTgln > pMods
Description —
Incorrect
C o L oL el
“T2_Regs =EE
<Throt_Reg>
vozCal >
@ Trans (\‘ I <Eliphlede>
N\-J SlipCalc

Notes on the incorrect model
e Inport 2 should be moved in so it does not cross the feed back loop lines.
e Outport 1 should be moved to the right hand side of the diagram.

M Readability O Verification and Validation
Rationale O Workflow O Code Generation
O Simulation

Last Change V2.0

4.3.4.3 na_0005: Port block name visibility in Simulink models

ID: Title na_0005: Port block name visibility in Simulink models
Priority Strongly recommended

15

Scope MAAB

MATLAB
Version

MA Check |Yes
Prerequisites None

The name of an Inport or Outport should not be hidden. ("Format / Hide Name™" is not
allowed.)

All

I: 1 } EngRFM LF P EngRFEM_LF
EngRPM_LP =~ et £
EngRPM_Filt | ——————————»{_ 1)
== <EngRPM_Fitt>

Description) — | EngREM_UnEit EngRFM_Filt
EngRFM_UnFilE —

EngineRPM_Filter

Note: the correct setting is applied to the Inport and Outport blocks in the ORION

Library.
M Readability [0 Verification and Validation
Rationale O Workflow [0 Code Generation

0 Simulation
Last Change V2.2

4.3.4.4 jc_0081: Icon display for Port block
ID: Title jc_0081: Icon display for Port block

Priority Recommended
Scope MAAB
MATLAB

. R14 and later
Version

MA Check |Yes
Prerequisites |INone
The ‘Icon display’ setting should be set to ‘Port number’ for Inport and Outport

blocks.
Correct
- -,
Descrlpthn var_in_1 fuar_piame 1> var_out_1
@ <war_name_2r
war_in_2 war_out_ 2
Incorrect

16

Note: the correct setting is applied to the Inport and Outport blocks in the ORION

Library.
M Readability [0 Verification and Validation
Rationale O Workflow [0 Code Generation

O Simulation
Last Change (V2.1

4.3.4.5 jm_0010: Port block names in Simulink models

ID: Title jm_0010: Port block names in Simulink models

Priority Strongly recommended
Scope MAAB

MA'I_'LAB All

Version

MA Check |Yes

db_0042: Ports in Simulink models
na_0005: Port block name visibility in Simulink models

Prerequisites 2 "0009: Entry versus propagation of signal labels

The names of Inport blocks and Outport blocks must match the corresponding signal
or bus names.
Exceptions:
« When any combination of an Inport block, an Outport block, and any other
block have the same block name, a suffix or prefix should be used on the

Description Inport and Outport blocks.
e One common suffix is “ In” for Inports and “ Out” for Outports.
e Any suffix or prefix can be used on the ports, however the selected option
should be consistent.
e Library blocks and reusable subsystems that encapsulate generic functionality.
M Readability [0 Verification and Validation
Rationale M Workflow O Code Generation

M Simulation
Last Change V2.2

4.3.4.6 jh_0018: Variable type casting

ID: Title jh_0018: Variable type casting
Priority Recommended

17

Scope ORION

MA‘I_'LAB All
Version
MA Check |No

Prerequisites None

All CSU top level inputs and outputs must be set to the appropriate Simulink bus

object. The bus explicitly defines all of the attributes of the data including the type,

dimension, and rate. This will ensure compatibility with the higher level empty box
Description |architecture.

Also, if model reference blocks are used within a CSU, the input and output data
attributes should be explicitly defined in the ports (dimension, bus type, data type)

[l Readability M Verification and Validation
Rationale O Workflow e Code Generation
M Simulation

Last Change V1.0
4.3.5 Signals and Buses

Signal labels are used to make model functionality more understandable from the Simulink
diagram. They can also be used to control the variable names used in simulation and code
generation. Signal labels should be entered only once (at the point of signal origination). Often it is
desirable to also display the signal name elsewhere in the model. In these cases, the signal name
should be inherited until the signal is functionally transformed. (Passing a signal through an
integrator is functionally transforming. Passing a signal through an Inport into a nested subsystem is
not.) Once a named signal is functionally transformed, a new name should be associated with it.

Signals may be scalars, vectors, or buses. They may carry data or control flows. Unless explicitly

stated otherwise, the following naming rules apply to all types of signals.

4.3.5.1 jc_0221: Usable characters for signal line name

ID: Title jc_0221: Usable characters for signal line names

Priority Strongly recommended
Scope MAAB

MA'I_'LAB All

Version

MA Check |Yes
Prerequisites None
All named signals should conform to the following constraints:

Description |[FORM name:
e should not start with a number

18

e should not have blank spaces
e carriage returns are not allowed

ALLOWED name:

CHARACTERS |abcdefghijklmnopqgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789 _

UNDERSCORES name:
e can use underscores to separate parts
« cannot have more than one consecutive underscore
e cannot start with an underscore
« cannot end with an underscore

M Readability [0 Verification and Validation
Rationale M Workflow M Code Generation
0 Simulation

Last Change V2.1

4.3.5.2 jh_0040: Usable characters for Simulink Bus names
ID: Title jh_0040: Usable characters for Simulink Bus Names

Priority Strongly recommended
Scope MAAB

MA'I_'LAB All

Version

MA Check |Yes — this check is covered by jc_0221
Prerequisites None
All Simulink Bus names should conform to the following constraints:

FORM name:
o should not start with a number
« should not have blank spaces
e carriage returns are not allowed

ALLOWED name:
Descriotion CHARACTERS |abcdefghijklmnopqgrstuvwxyz
g ABCDEFGHIJKLMNOPQRSTUVWXYZ

0123456789 _

UNDERSCORES name:
e can use underscores to separate parts
« cannot have more than one consecutive underscore
e cannot start with an underscore
« cannot end with an underscore

M Readability O Verification and Validation
Rationale M Workflow M Code Generation
O Simulation

19

Last Change V1.0

4.3.5.3 bn_0002: Signal name length limit
ID: Title bn_0002: Signal name length limit

Priority Strongly recommended
Scope ORION

MA‘I_'LAB All

Version

MA Check |Yes
Prerequisites jjc_0221: Usable characters for signal line names

The names of all signals must be unique. The Compiler limit of 32 characters must be
observed when creating signal names that are used for variable names in code.

. 32 characters is the maximum limit
Description

Example:
Signal_Value_Argument_Variable_Example - should be changed to
signal_Value_Argument_Variable Ex

M Readability M Verification and Validation
Rationale O Workflow M Code Generation
0 Simulation

Last Change V2.2

4.3.5.4 jh_0041: Simulink Bus Name Length Limit
ID: Title [jh_0041: Simulink Bus name length limit

Priority Strongly recommended
Scope ORION

MA‘I_'LAB All

Version

MA Check |Yes — this check is covered by bn_0002
Prerequisites jh_0040: Usable characters for Simulink Bus Names

The names of all Buses must be unique for the entire software model unless the
contents of the bus are identical. Bus names must start with a capital letter. The
Compiler limit of 32 characters must be observed when creating signal names that are
used for variable names in code.

Description |35 characters is the maximum limit

Example:
BUS Value_Argument_Variable_Example - should be changed to
BUS_Value_Argument_Variable_Ex

20

Rationale

Last Change

M Readability M Verification and Validation
O Workflow M Code Generation
[0 Simulation

V11

4.3.5.5 jh_0051: Simulink Bus Format

ID: Title
Priority
Scope

MATLAB
Version

MA Check
Prerequisites

Description

jh_0051: Simulink Bus Format
Mandatory
ORION

All

Yes
jh_0040: Usable characters for Simulink Bus Names

The root level of a CSU should have 2 inports and 1 outport and follow the following
standard:

Input port and bus object name:
e <3 letter Domain abb.> <CSU abb.>_IN
Input parameter port and bus object name:
e <3 letter Domain abb.> <CSU abb.> PRM
Output port and bus object name:
e <3 letter Domain abb.> <CSU abb.>_ OUT
Internal bus object name (these are buses that are not used outside of the CSU):
e <3 letter Domain abb.>_<CSU abb.>_<your_internal_bus_name>

The script that loads the CSU input, output, and parameter buses to the workspace
should use the following naming convention:

e |0adCSUBuUses_ <3 letter Domain abb> <CSU abb>.m
The script that loads the internal bus to the workspace should use the following
naming convention:

e |oadIntIBuses <3 letter Domain abb>_ <CSU abb>.m

The top level 10 ports should be set to non-virtual to ensure that the bus structure is
retained in the autocode. The following diagram shows the dialog box for an input
port with the “Output as non-virtual bus” option checked. Version 2.0 of the Orion
Library has this option set by default for the input ports/output ports/ and bus creator
blocks.

21

=] Source Block Parameters: Inport

Inpark

Provide an input port For a subsystem or model,

For Triggered Subsystems, 'Latch input by delaying outside signal' produces the
walue of the subsyskem input at the previous time step,

For Function-call Subsystems, 'Latch input by copving inside signal' copies the
Inport block's output ko a buffer before the contents of the subsystem are
executed,

The other parameters can be used to explicitly specify the input signal attribukes,

Main Signal Attributes

Specify properties via bus object
Bus object For walidating input bus:

| BusObject |

Il] Cukput as nonvirtual bus
Port dimensions (-1 For inherited):

E |

Sample kime (-1 For inherited):

B |

Minirnurn: Maxirmurn:
¥ 0 |
Data bype: |Inherit: auto =

Signal bype: |aut|:| |

Sampling mode: |aut|:| |

“)- [ok H Cancel][Help]

Example of root level of CSU model — the IN/OUT/PRM ports are shown:

GDE_PREDOUID_IN

GOE_PREDGUID_OUT
New_Function

pitch

ol

<{PARAMS) |

GDE_PREDGUID_PRM

22

Large Simulink Buses should contain nested buses to improve data organization
similar to that of structured data. Organizing the buses into nested buses greatly
increases the accessibility of the data.

Warning: when using nested buses do not name the element the same name as
the bus type. This will cause errors in the autocode. Also, the element name and
bus type should not differentiate on case alone.

For example:
A quaternion Bus may consist of the following signals:

BUS_quat_dbl:
e 5(1x1) double
e Vv (3x1) double

The input bus may contain multiple quaternions as following:
BUS_Input

e Input_data (3x3) double

e quatl(BUS quat_dbl)

e quat2(BUS_quat_dbl)

Note: The ORION Library uses the following buses for quaternion and euler math.
These buses are automatically loaded when the library is used.
e BUS euler_dbl:
o Yyaw: (1x1) double
o pitch: (1x1) double
o roll: (1x1) double
o sequence: (1x1) int32
e BUS euler_sgl:
o yaw: (1x1)single
o pitch: (1x1) single
o roll: (1x1) single
o sequence: (1x1) int32
e BUS quat_dbl:
o s:(1x1) double
o V:(1x1) double
e BUS quat_sgl:
o s:(1x1) single
o V:(1x1) single

M Readability M Verification and Validation
M Workflow M Code Generation
O Simulation

Last Change V1.3

23

4.3.5.6 dm_0001: Signal and Bus Element Naming Convention
ID: Title dm_0001: Signal and Bus Element Naming Convention

Priority Strongly recommended
Scope ORION

MATLAB Al

Version

MA Check No

Prerequisites

Signal and Bus Element names shall adhere to the following convention:

o The first letter of each word contained in a signal or bus element name shall
be capitalized.

« Each word contained within a signal or bus element name shall be separated
with a single underscore or with no space at all.

o For multi-word signal or bus element names the first letter of second and
subsequent words shall be capitalized (example: Multi_Word_Identifier or

Description MultiWordldentifier).

e Blank characters shall not be used to separate words use to form signal or bus
element names.

e When a signal or bus element name contains an acronym, the acronym should
be represented in uppercase letters (upper case capitalization).

Note: This does not apply to the common quaternion and euler buses used by blocks
in the ORION Library.

M Readability O Verification and Validation
Rationale O Workflow M Code Generation
0 Simulation

Last Change V1.3

4.3.5.7 mj_0001: CSU Input Bus Naming
ID: Title mj_0001: CSU input Bus Naming

Priority Recommended
Scope ORION
MA'I_'LAB Al

Version

MA Check |No

Prerequisites jh_0051: Simulink Bus Format

CSU input bus types should have field names identical to their upstream CSU output
bus field names whenever possible. This facilitates traceability and reduces error
potential. Exceptions may be made on a case by case basis to keep CSUs generic or
for other reasons. Variable name changes inside of CSUs are permissible at the CSU
developer’s discretion.

Description

24

Example of acceptable internal signal name changes with selected CSU inputs feeding
subsystems with differing input port names:

WAL

= ||CNS_Signal_Conditioning_CSU|

Bus members are
selecied fromthe
== IN-bus and renamed
in the process of
being passedinto
routines/blocks
within the CSU

O em—p——_[A5_NTIC_%]

Cna_Casc IR IR

Do not change the variable names at the Junction Box Level (shown below)

25

Bus members are
selected fromthe
providerOUT-bus
and renamed via -
“Convert’block to [T

a newnames in the ! S I T
userCSU’s IN-bus, — " HERAIMEIE o

v

Q_oo_-n_k-_m
L2 L]
AR w_ob_wet_tage TARD)
[MVA_ABSSUPFO_OUT= O AT el
u_1e ") e >
> >
)
>
%R _moon_ert_oog 3K 'l it 254 I SR _moen_wa_oog R i
w_ASNLOS_wt_ob_nK> '. - w_moonLOS_w_entl_ECH '.
» ey CNS_SMVP_IN
SR et ent_oog JI%0 'l sngle I R o3 et sog DCI o
A ~
o _SaALOS e _so_JiK> »_eahLOS _wr_ewn_EC|

M Readability O Verification and Validation
Rationale O Workflow M Code Generation
O Simulation

Last Change V1.0

4.3.5.8 jh_0111: Bus Ordering and Alignment

ID: Title \jh_Olll: Bus Ordering and Alignment

Priority \Mandatory

Scope ORION
MATLAB
Version

MA Check |No

Prerequisites \jh_OOSl: Simulink Bus Format

All elements in a Simulink Bus should be ordered largest to smallest to prevent data
from overlapping a 32-bit boundary. This restriction is related to a limitation on the
Description |target processor that must be realized in the source of the autocode to prevent issues.

Bus must be ordered based on data type in descending order of size, i.e. double >

26

Rationale

Last Change

single > uint32 > uint16 > uint8 (Boolean is treated like an uint8).

For Example, the following bus will correctly fall on 32-bit boundary.
float a;
float b
uint8 c[3];

However, this bus will not:
float a;
uint8 c[3];
float b;

0 Readability O Verification and Validation
O Workflow M Code Generation
O Simulation

V1.0

4.3.5.9 jh_0117: Shared CSUs Across Domains

ID: Title
Priority
Scope

MATLAB
Version

MA Check
Prerequisites

Description

jh_0117: Shared CSUs Across Domains
Mandatory
ORION

All

No
jh_0051: Simulink Bus Format

In some rare cases, a CSU may be used in more than one domain. This CSU will
perform the same function in each CSU and is not modified in any way.

If this is the case one of the domains should be selected as the owner of the CSU. The
CSU will be named using the domain prefix of the parent Domain. In the other/non-
owner Domain, the CSU is referenced in a Junction box with I/O/PRM naming
specific to the domain and function of the CSU. Within this Junction box, the signals
will be renamed to correspond to the naming convention of the referenced CSU
model:

Note: The configuration set of the CSU must be set to use “CSUCfgSetMR”. This
will ensure that the code produced for the CSU can be called from multiple domains.

Example:

The GDO_OrbGuid_CSU is used within both the GDO and GDE domains. The GDO
domain is chosen as the parent. The I/O/PRM naming is tied to the GDO Domain:

27

e GDO_OrbGuid_IN
e GDO_OrbGuid_OUT
e GDO_OrbGuid_PRM

For this CSU to be used in the GDE Domain, a separate CSU naming scheme must be
used for the Junction box. In this case, the new name is GDE_CMRaiseTargetGuid.
The I/O/PRM naming entering and leaving the Junction box is as follows:

e GDE_CMRTG_IN
e GDE_CMRTG _OUT
e GDE_CMRTG_PRM

Within the Junction box, the buses are renamed to match that of the GDO_OrbGuid
I/O/PRM.

e GDE_CMRTG _IN renamed to GDO_OrbGuid_IN
e GDE_CMRTG _OUT renamed to GDO_OrbGuid_OUT
e GDE_CMRTG _PRM renamed to GDO_OrbGuid_PRM

GOE_CMRTG_IN'QUT/PRM

GO0 OrsGud SYOUT/PaM

I/O renamed to
match
GDO_OrbGuid_CSU

GDO_OrbGuid GDE_CMRaiseTargetGuid

JBox

Jbox

GO0 _OrsGua N ouT/Pa GPO_OrkGud INOUT/PAM

GDO_OrbGuid_CSU

This approach will ensure full CSU code reusability across domains.

M Readability 0 Verification and Validation
Rationale M Workflow M Code Generation
M Simulation

Last Change V1.0

4.3.5.10 na_0010: Grouping data flows into signals

ID: Title \na_OOlO: Grouping data flows into signals

28

Priority
Scope

MATLAB
Version

MA Check
Prerequisites

Description

Strongly recommended
MAAB

All

Yes
None

Vectors

The individual scalar signals composing a vector must have common functionality,
data types, dimensions and units. The most common example of a vector signal is
sensor or actuator data that is grouped into an array indexed by location. The output
of a Mux block must always be a vector. The inputs to a Mux block must always be
scalars.

All vectors must be Column vectors (nx1)

Buses

Signals that do not meet the vectorization criteria described above must only be
grouped into bus signals. Bus selector blocks may only be used with a bus signal
input; they must not be used to extract scalar signals from vector signals.

Examples

Some examples of vector signals include:

Vector type Size

Column vector [n1]

Wheel speed vector [Number of wheels 1]
Cylinder vector [Number of cylinders 1]

Position vector based on 2-D
coordinates

Position vector based on 3-D
coordinates

[21]

[31]

Some examples of bus signals include:
Bus Type Elements
Force Vector [Fx; Fy; Fz]
Position
Sensor Bus Wheel Speed Vector [Of: O - O - O]
Acceleration
Pressure
Sensor Bus
Actuator Bus
Serial Data Bus Coolant Temperature

29

Controller Bus

Engine Speed,
Passenger Door Open

M Readability [0 Verification and Validation
Rationale M Workflow M Code Generation
[0 Simulation

Last Change V2.1

4.35.11 na_0009: Entry versus propagation of signal labels
ID: Title na_0009: Entry versus propagation of signal labels

Priority Strongly recommended
Scope MAAB

MA'I_'LAB All

Version

MA Check |Yes
Prerequisites na_0008: Display of labels on signals

If a label is present on a signal, the following rules define whether that label shall be
created there (entered directly on the signal) or propagated from its true source
(inherited from elsewhere in the model by using the ‘<’ character).

1. Any displayed signal label must be entered for signals that:

a. Originate from an Inport at the Root (top) Level of a model

b. Originate from a basic block that performs a transformative operation
(For the purpose of interpreting this rule only, the Bus Creator block,
Mux block and Selector block shall be considered to be included among
the blocks that perform transformative operations.)

2. Any displayed signal label must be propagated for signals that:

Description

a. Originate from an Inport block in a nested subsystem
Exception: If the nested subsystem is a library subsystem, a label may
be entered on the signal coming from the Inport to accommodate reuse
of the library block.

b. Originate from a basic block that performs a non-transformative
operation

c. Originate from a Subsystem or Stateflow chart block
Exception: If the connection originates from the output of a library
subsystem block instance, a new label may be entered on the signal to
accommodate reuse of the library block.

30

Ready 00%
s/—>ﬁ z
M Readability M Verification and Validation
Rationale M Workflow M Code Generation
O Simulation

Last Change V2.0

4.35.12 hyl 0311: Naming of signals passed through multiple subsystems

ID: Title hyl _0311: Naming of signals passed through multiple subsystems
Priority Strongly recommended

Scope ORION
MA‘I_'LAB All
Version

MA Check Yes
Prerequisites |None

Names of inports/outports should not change between a subsystem and its parent, with
the allowable exception that the first layer of subsystems may change a top-level
infout name (at the CSU root level). If such a change is performed, all first layer
subsystems shall use the same name change for consistency. [Example: A signal
o called "pitchAngle" can be input, and changed to "pitch" on a 1st subsystem layer, but
Description lyou cannot change this name to "theta" in a lower subsystem.] This standard is
completed for convenience within the model.

Example:
Incorrect

31

Root Level |

> :
pitchAngle PIteh

% input2

% input3

Convert_Data
In2 s Data2
g
M Readability M Verification and Validation
Rationale M Workflow 0 Code Generation

O Simulation

Last Change V2.1

4.3.5.13 na_0008: Display of labels on signals

ID: Title]na_0008: Display of labels on signals

Priority ~ |Recommended
Scope MAAB
MATLAB Al

Version

MA Check |Yes

Prerequisites None

32

Description

Rationale

Last Change

4.3.5.14

ID: Title
Priority
Scope

MATLAB
Version

MA Check
Prerequisites

Description

A label must be displayed on any signal originating from the following blocks:

Inport block

From block (block icon exception applies — see Note below)

Subsystem block or Stateflow chart block (block icon exception applies)
Bus Selector block (signal labels are automatic)

Demux block

Selector block

A label must be displayed on any signal connected to the following destination blocks
(directly or via a basic block that performs a non transformative operation):

Outport block

Goto block

Bus Creator block

Mux block

Subsystem block

Chart block

Embedded Matlab Block

Note: Block icon exception (applicable only where called out above): If the signal label
is visible in the originating block icon display, the connected signal need not also have
the label displayed unless the signal label is needed elsewhere due to a destination-
based rule.

In addition, a label may be displayed on any other signal of interest to the user.

M Readability M Verification and Validation
M Workflow M Code Generation
O Simulation

V2.1

db_0097: Position of labels for signals and buses

db_0097: Position of labels for signals and buses
Strongly recommended
MAAB

All

No
None

The labels must be visually associated with the corresponding signal and not overlap
other labels, signals or blocks.

33

Labels should be located consistently below horizontal lines and close to the
corresponding source or destination block.

Correct:

. [D
RPMRaw_in EngRPMRaw EngRPMFilt RPMFIlt_out

EngSignal_LowPass

M Readability O Verification and Validation
Rationale M Workflow O Code Generation
O Simulation

Last Change V2.0

4.3.5.15 hyl _0110: Branching line format

ID: Title \hyl_OllO: Branching line format

Priority Strongly recommended
Scope ORION

MA'I_'LAB All

Version

MA Check |No

Prerequisites None

All branch lines shall have a "solder-joint" showing the connection point. Line
branches should be made as short as possible, avoid crossing other lines as much as
possible and not cut across blocks.

Examples of Incorrect Signal Line Usage

Out1

Description

Rationale

O Verification and Validation
O Code Generation

M Readability
O Workflow
O Simulation

Last Change V2.1

4.3.5.16

ID: Title
Priority
Scope

MATLAB
Version

MA Check

mdb_0032: Simulink signal appearance

mdb_0032: Simulink signal appearance
Strongly recommended
ORION (modified MAAB db_0032)

All

No

Prerequisites [None

Description

Rationale

Signal lines
e Should not cross each other, if possible.
e Are drawn with right angles.
e Are not drawn one upon the other.
e Do not cross any blocks.
« Can be split into two or three sub lines at a single branching point
Correct Correct

1]

Constant Terminator

——p) 1

Terminatard Constant

Terminator2

Terminatar

o M |
Lol

Terminatort

Terminatorz

O Verification and Validation
O Code Generation

M Readability
M Workflow
O Simulation

Last Change (V2.0

4.3.5.17

ID: Title
Priority
Scope

MATLAB
Version

MA Check

db_0081: Unconnected signals, block inputs and block outputs

db_0081: Unconnected signals, block inputs and block outputs
Mandatory
MAAB

All

Yes

Prerequisites None

Description

A system must not have any:

35

Rationale

Unconnected subsystem or basic block inputs.

Unconnected subsystem or basic block outputs

Unconnected signal lines

An otherwise unconnected input should be connected to a ground block

An otherwise unconnected output should be connected to a terminator block

Correct

RPM_2Z_RadPerSec

RPM_2_RadPerSec

M Readability M Verification and Validation
M Workflow [0 Code Generation
O Simulation

Last Change V2.0

4.3.5.18

ID: Title
Priority
Scope

MATLAB
Version

MA Check

jh_0061: Use of Parameters

jh_0061: Use of Parameters
Mandatory
ORION

All

No

Prerequisites None

Description

Parameters may be accessed without connecting signal lines throughout the CSU
model. The following blocks make up the Parameter interface for the ORION Library:

e Param_Gain

e Param_Const

o Param_Goto

e Param_Visibility

e Param_From
The data on the parameter bus can be accessed by using the Param_Gain,
Param_Const, and Param_Goto blocks. The Param_Gain and Param_Const let you
select any data that is on the Parameter bus directly without using a bus selector and
connecting the signal line to the root level.

36

The example below shows how the parameter input bus should be used. Itis
connected directly to a Goto block that is visible throughout the entire CSU model.

Y

Q’t!;ﬂ'} >[yaw P T
Input_BUS l/ 3 2 sum_of_data
> Output_BUS

Param_Gain

pitch

pch>

Param_Const

= <{PARAMS] |
params

params Patam_Goto

[PARAMS)

Paiam_Visidility

Note: the Param_Visibility block does not pass through model reference blocks or
atomic subsystems. To use data from the parameter bus in these systems, it must be
taken as an input using the Param_From block.

M Readability [0 Verification and Validation
Rationale O Workflow [0 Code Generation
0 Simulation

Last Change V1.0

4.3.6 Blocks

This section generically applies to individual blocks that are used in the models.

4.3.6.1 hyl_0302: Usable characters for Block Names
ID: Title hyl _0302: Usable characters for block names

Priority Strongly recommended
Scope ORION

MA'I_'LAB All

Version

MA Check |Yes
Prerequisites |jc_0201: Usable characters for Subsystem names

All named blocks should conform to the following constraints:

FORM name:
Description e should not start with a number
e should not have blank spaces
e carriage returns are not allowed

37

ALLOWED name:

CHARACTERS |abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789 _

UNDERSCORES name:
e can use underscores to separate parts
« cannot have more than one consecutive underscore
e cannot start with an underscore
« cannot end with an underscore

M Readability [0 Verification and Validation
Rationale M Workflow M Code Generation
[0 Simulation

Last Change V2.0

4.3.6.2 hyl_0305: Block name uniqueness
ID: Title hyl_0305: Block name uniqueness

Priority Strongly recommended
Scope ORION

MA‘I_'LAB All

Version

MA Check |Yes
Prerequisites |None

Block names shall not be made unique by using case.

Example:
Incorect
Description
My _Filter MY_FILTER
M Readability O Verification and Validation
Rationale O Workflow M Code Generation

O Simulation

38

Last Change V2.1

4.3.6.3 hyl_0309: Block name usage
ID: Title hyl _0309: Block name usage

Priority Recommended
Scope ORION
MA‘I_'LAB All

Version

MA Check |No

Prerequisites |None

Block names may be left as the default name (i.e., "greaterThan™), but if a better name
is available, the user is encouraged to use it. It is desirable for the blocks to be named

Description with the intent rather than the value. For example, it would be better to name a
constant with the value of zero “initialSelection” than to name it “zero”.
M Readability M Verification and Validation
Rationale O Workflow M Code Generation
O Simulation

Last Change V2.1

4.3.6.4 jh_0062: Constant Block Naming
ID: Title jh_0062: Constant Block Naming

Priority Strongly Recommended
Scope ORION

MATLAB All

Version

MA Check Yes
Prerequisites |None

Constant blocks should be named according to the data that they contain. This will
aid in the traceability of the autocode produced.

Description
Note: this standard does not apply to the Param_Const block.
M Readability M Verification and Validation
Rationale O Workflow M Code Generation
O Simulation

Last Change V2.1

39

4.3.6.5 jm_0002: Block resizing

ID: Title
Priority
Scope

MATLAB
Version

MA Check
Prerequisites

Description

Rationale

Last Change

jm_0002: Block resizing
Mandatory
MAAB

All

No
None

All blocks in a model must be sized such that their icon is completely visible and
recognizable. In particular, any text displayed (e.g. tunable parameters, filenames,
equations) in the icon must be readable.

This guideline requires resizing of blocks with variable icons or blocks with a variable
number of inputs and outputs. In some cases it may not be practical or desirable to
resize the block icon of a subsystem block so that all of the input and output names
within it are readable. In such cases, the user may hide the names in the icon by using
a mask or by hiding the names in the subsystem associated with the icon. In this
approach, the signal lines coming into and out of the subsystem block should be
clearly labeled in close proximity to the block.

Correct

|tunab|e_parameter_value |n

1 input_signal1

z+0.5 inpLt_signal2
Discrete
Transfer Fen

(double) p

Constant

[o== o>

input_signal3 output_signal

input_signald

Gain Fram Sum Data Type input_signals
Conversion subsystemn
Incorrect
|
TARLE_SigriarT
Constant E+0.5 input_signal2
i Disgret;a input_signa@put_sigrial
) . + ranster Fen input_signald
>b} '> Sum _ igput =ignals
Gain From Data Type subsystem
Canversian
M Readability 0 Verification and Validation
O Workflow [0 Code Generation
0 Simulation
V2.0

4.3.6.6 db_0142: Position of block names

ID: Title
Priority
Scope
MATLAB

db_0142: Position of block names
Strongly recommended

MAAB

All

40

Version

MA Check |Yes

Prerequisites None

Description

Rationale

If shown, the name of each block should be placed below the block.

Correct
0.05z
i1 EngRPMRaw I - EngRPMFilt @
EngSignal_LowPass
Incorrect
TransSignal_LowPass
0.08z
{Z} TransRPMRaw * 2.0 95 TransRPMFilt
M Readability O Verification and Validation
M Workflow O Code Generation
O Simulation

Last Change V2.0

4.3.6.7 jc_0061: Display of block names

ID: Title
Priority
Scope

MATLAB
Version

MA Check

Description

jc_0061: Display of block names
Recommended
MAAB

All

Yes
Prerequisites |INone

The block name should be displayed when it provides descriptive information.

-

I:'

FuelRateMonitor

EngineSpeedFilter

0.05z

z-0.85

[

ThrottleAsbitration

The block name should not be displayed if the block function is known from its

appearance.

41

Rationale

Last Change

1
min [- B =qi [Merge |
=z
{IC=0}
-
w b 4= L ;\} }}
— —
fu2 == 0}

. +
zn = + [

M Readability [0 Verification and Validation
0 Workflow [0 Code Generation
[0 Simulation

V2.1

4.3.6.8 db_0140: Display of basic block parameters

ID: Title
Priority
Scope

MATLAB
Version

MA Check
Prerequisites

Description

db_0140: Display of basic block parameters
Recommended
MAAB

All

Yes
None

Important parameters with values other than the block’s default values should be
displayed. Many blocks within the ORION Library have important parameter values
displayed by default.

Note: The attribute string is one method to support this. The block annotation tab
allows the users to add the desired attribute information.

Correct
1
A - P _|'|_
. = =tates = rezet
inital=10
tzample=.01
A
4 2L | Merge b
A
+0.5
tzample=-1 inital=[10 4]

42

M Readability M Verification and Validation
Rationale O Workflow 0 Code Generation
[0 Simulation

Last Change V2.1

4.3.6.9 mdb_0141: Signal flow in Simulink models
ID: Title mdb_0141: Signal flow in Simulink models

Priority Strongly recommended

Scope ORION (modified MAAB db_0141)
MATLAB All

Version

MA Check |No

Prerequisites [None

The signal flow in a model is from left to right.
o Exception: Feedback loops

Sequential blocks or subsystems are arranged from left to right.
o Exception: Feedback loops
Parallel blocks or subsystems are arranged from top to bottom.

E 2 o

- [—”-w.—,-- T Y P et = "_.'
T e — — P il>Phwnen womr Doty DethatA
AL H< kel o . Flod. omar—pl 2)
D . t|0n _ | aobel 3 - L::!l“. Al _’:‘ffﬁ
escri oass) e . |)
p = ' ——— "‘:L
oo f—P{ 4)
Signal flow should be drawn from left to right & _’;
' o D
N N e -

v r:: : '—:I W S [

pree._ 20 ¥ i _
Taoun D <_lowanl
B rrra .
o L]
T e
M Readability M Verification and Validation
Rationale M Workflow O Code Generation
O Simulation

Last Change V2.0

4.3.6.10 jc_0171: Maintaining signal flow when using Goto and From blocks
ID: Title jc_0171: Maintaining signal flow when using Goto and From blocks
Priority Strongly recommended

Scope MAAB

MATLAB All

43

Version
MA Check |No
Prerequisites [None

e Visual depiction of signal flow must be maintained between subsystems.
e Use of Goto and From blocks is allowed provided that
e At least one signal line is used between connected subsystems.
e If the subsystems are connected both in a feed forward and feedback loop
then at least one signal line for each direction must be connected.

Correct
-'-.::-u ESPN :.:‘- Cx -,
Description = ']
Incorrect

M Readability M Verification and Validation
Rationale M Workflow 0 Code Generation
0 Simulation

Last Change V2.0

4.3.6.11 jc_0281: Naming of Trigger Port block and Enable Port block

ID: Title jc_0281: Naming of Trigger Port block and Enable Port block
Priority Strongly recommended

Scope J-MAAB

MATLAB |All

44

Version
MA Check |Yes
Prerequisites [None

For Trigger port blocks and Enable port blocks
e The block name should match the name of the signal triggering the
subsystem.

OE2Ed&| ¢ Bl

Description -
Taskstl
Task2ms
4
\‘\ |[100% | [

M Readability O Verification and Validation
Rationale O Workflow O Code Generation
O Simulation

Last Change V2.0

4.3.7 Block Usage

The acceptable blocks that can be used for ORION GN&C models are restricted. The ORION
Library contains all of the blocks that are deemed useable in models.

4.3.7.1 hyl_0201: Use of standard library blocks only
ID: Title hyl_0201: Use of standard library blocks only

Priority Mandatory
Scope ORION
MA‘I_'LAB All
Version

MA Check |Yes
Prerequisites None

Only compliant Library blocks from the Orion GN&C Algorithm Library should be
used in the models. If non-compliant blocks are used, it shall have foreground color

of red (Colorspec RGB value = [1.000000, 0.501961, 0.501961])

L The ORION library contains a section of non-compliant blocks in the “Prototype
Description

blocks are for development only and should not be included in the final models
The Domain Level Blocks section contains blocks that should only exists at the
domain level and are prohibited at the CSU level.

45

Blocks” section. These blocks are already colored red. The purpose of this set of

[ORION Library 2008b v1.2.2]

[Standard Tools)

3t ix e o

Strerces and Serke Vs Opernor Logt and Relatonet Ops Cizcarbrmte: 1 n Math 3 - Madel Docunentat
n ' Commpttaon Doman
&c Z m ‘& Nioer Lovw
St yalen I+ Voctor Functisn Signl Rosting o - Dvacrate P - Comepriaon Lt 1 - Doman Levet Binch
ﬁ (R P Hu-v':ﬁ:xm Tabte Loabup F'B'"‘.'{':'
Silvhim pem ‘.:'-:::Jm Lsrary Ondy

2ated —— ML F
M Readability M Verification and Validation
Rationale ™M Workflow M Code Generation

M Simulation
Last Change V2.1

4.3.7.2 jh_0101: Use of Right-Handed Quaternions only
ID: Title jh_0101: Use of Right-Handed Quaternions Only

Priority Mandatory
Scope ORION
MA‘I_'LAB All
Version

MA Check |Yes
Prerequisites [None

Orion GN&C models shall only use right-handed quaternions. The ORION GN&C
Description |Library does not support the use of left-handed quaternions.

M Readability M Verification and Validation
Rationale M Workflow M Code Generation
M Simulation

Last Change V1.0

4.3.7.3 na_0003: Simple logical expressions in If Condition block

ID: Title na_0003: Simple logical expressions in If Condition block
Priority Mandatory

46

Scope

MATLAB
Version

MA Check
Prerequisites

Description

MAAB
All

Yes
None

A logical expression may be implemented within an If Condition block instead of
building it up with logical operation blocks if the expression contains two or fewer
primary expressions. All inputs to an If Condition block must be the same data type.
A primary expression is defined here to be one of the following:
e Aninput
e A constant
o A constant parameter
o A parenthesized expression containing no operators except zero or one
instances of the following operators: <, <=,>,>=, ~= == ~ . (See below
for examples)

Exception:

A logical expression may contain more than two primary expressions if both of the
following are true:

e The primary expressions are all inputs

o Only one type of logical operator is present

Examples of acceptable exceptions:

e ul|u2|u3|ud|us
e Ul&U2&U3&U4

Examples of primary expressions include:

ul

5

K
(ul1>0)
(ul<=G)
(ul>U2)
(~ul)

Examples of acceptable logical expressions include:

ul|u2

(ul>0) & (ul<20)
(ul>0) & (U2 <ud)
(ul>0) & (~u2)

Examples of unacceptable logical expressions include:

47

e Ul&u2|u3 (too many primary expressions)

e Ul & (U2]|ul) (unacceptable operator within primary
expression)

e (Ul>0)&(Ul<20)&(u2>5) (too many primary expressions that are
not inputs)

e (U1>0)&((2*u2) >6) (unacceptable operator within
primary expression)

M Readability [0 Verification and Validation
Rationale M Workflow OO0 Code Generation
[0 Simulation

Last Change V2.1

4.3.7.4 na_0002: Appropriate implementation of fundamental logical and numerical

operations
ID: Title na_0002: Appropriate implementation of fundamental logical and numerical
) operations
Priority Mandatory
Scope MAAB
MATLAB Al
Version

MA Check No
Prerequisites |None

« Blocks that are intended to perform numerical operations must not be used to
perform logical operations.

Incorrect
ER— x [Coube
Description :

o A logical output should never be directly connected to the input of blocks
that operate on numerical inputs.
o The result of a logical expression fragment should never be operated on by a
numerical operator.
Incorrect

48

A ND | boo

« Blocks that are intended to perform logical operations must not be used to
perform numerical operations.

o A numerical output should never be connected to the input of blocks that
operate on logical inputs.

Incorrect

|4 ND | bocles

M Readability [0 Verification and Validation
Rationale M Workflow [0 Code Generation
0 Simulation

Last Change V2.0

4.3.7.5 na_0011: Scope of Goto and From blocks
ID: Title na_0011: Scope of Goto and From blocks

Priority Strongly recommended
Scope MAAB

MA'I_'LAB All

Version

MA Check |Yes
Prerequisites None

For signal flows the following rules apply:

Description
escriptio e From and Goto blocks must use local scope.

49

E] Sink Block Parameters: Goto 8 l’
~Goto
Send signals to From blocks that have the specified tag. If tag visibility is
'scoped!, then a Goto Tag Visibility block must be used to define the visibility of
the tag. The block icon displays the selected tag name (local tags are enclosed
in brackets, {]. and scoped tag names are enclosed in braces, {J).

- Parameters
Tag:|signal Tag Visibility:| local |
Corresponding From blocks: refresh
.‘V b 4 -‘: M
B (% b
DESE@ L@ «wwgi2 < » afor [ows BHMES REES
Determine Position Status Related Goto tags and
(Fromtags can only be \
R H — o located at the same level /
i e - in the model
ol
e e e e
bisbelactert Srpecan Ll > /
-— -y /
st — oote /
-——[E o T o |- s—
[mml Elarhas @ baved B Lavie oo s ¥ s I
Resady |] lodes &

Note: This rule does not apply to the Parameter Goto Block for passing static data

throughout a CSU.
M Readability O Verification and Validation
Rationale M Workflow M Code Generation
O Simulation

Last Change V2.0

4.3.7.6 jc_0141: Use of the Switch block

ID: Title jc_0141: Use of the Switch block

Priority Strongly recommended
Scope MAAB

MATLAB ‘ Al

Version

'MA Check Yes

Prerequisites None

The block parameter “Criteria for passing first input” should be set to u2~=0.

Description

50

The block parameter “Criteria for passing first input” must not be set to u2>Threshold
for R13 versions of MATLAB.

The logic for the switch block should be defined on the same level as the switch block
itself.

Correct

=] Function Block Parameters: Switch x|

—Swmitch

Fazs through input 1 when input 2 zatizsfies the selected criterion; othenvize, pass
through input 3. The inputs are numbered top to bottom [or left to right]. The input 1
pagz-thraugh criteria are input 2 greater than or equal, greater than, or not equal o
the threzhaold. The first and third input parts are data ports, and the zecond input port
iz the control port.

b ity I Signal Data Types

Criteria for passing first input: | u2 ~=10 ;I
Threzhold: L2 »= Threshold
Jo

Incorrect

double

@ double

Inl Cutl

Switch
+Threshald=20%

b ain | Signal Data Types |
Criteria for passingdirst input: |u2 >= Threshold)]

T hreshold:
|20

Note: This criteria is not available to change in the ORION Library. The criteria is
locked to “u2 ~=0".

M Readability O Verification and Validation
Rationale M Workflow O Code Generation
O Simulation

Last Change V2.1

51

4.3.7.7 hyl_0207: Limiting input to multiport switches
ID: Title hyl_0207: Limiting input to multiport switches

Priority Mandatory
Scope ORION
MA‘I_'LAB All
Version

MA Check |No

Prerequisites |None

Logic input to Multiport Switch Blocks shall never be less than one, or greater than
the number of switch ports on the block. The user ensures this by the model-design
Description or upstream limiting.

Note: One based indexing [1, 2, 3,...] is used for Matlab/Simulink

O Readability M Verification and Validation
Rationale O Workflow M Code Generation
M Simulation

Last Change V2.1

4.3.7.8 jc_0121: Use of the Sum block
ID: Title jc_0121: Use of the Sum block

Priority Recommended
Scope MAAB
MATLAB All

Version

MA Check |Yes
Prerequisites None

Sum blocks should:

e Use the “rectangular” shape.
Description | Be sized so that the input signals do not overlap.
Correct Incorrect

52

e The round shape can be used in feedback loops.
e There should be no more than 3 inputs.
e The inputs may be positioned at 90,180,270 degrees.
e The output should be positioned at 0 degrees.

Correct Incorrect
[
z [.
Linit Delay Gaint
1
input K autput suml
Gain
1| Dutpuij
1
b .
input output
Gain
1
z Fain1
Correct Incorrect

Gaind

autput [
1

M Readability [Verification and Validation
O Workflow [0 Code Generation
[J Simulation

Last Change V2.0

Rationale

53

4.3.7.9 jc_0131: Use of Relational Operator block

ID: Title
Priority
Scope

MATLAB
Version

MA Check
Prerequisites

Description

Rationale

Last Change

4.3.7.10
ID: Title
Priority
Scope

MATLAB
Version

MA Check
Prerequisites

Description

Rationale

Last Change

jc_0131: Use of Relational Operator block
Recommended
J-MAAB

All

Yes
None

When the relational operator is used to compare a signal to a constant value the
constant input should be the second (lower) input.

Correct Incorrect
o
A iz N ¢z
BB EE
m - »
| Ad
::IEI.:: ?I;': Relational
) Operatar
M Readability O Verification and Validation
O Workflow M Code Generation
O Simulation
V2.0

hyl _0211: Prohibit use of test points

hyl _0211: Prohibit use of test points
Strongly recommended
ORION

All

Yes
None

Test points shall not be used in the final models. However, the use of test points can

be used during development for testing purposes.

The configuration set used by the ORION GN&C FSW models ignores test points

when autocode is produced so there is not affect to code generation.

O Readability O Verification and Validation
O Workflow O Code Generation
M Simulation

V2.1

54

4.3.7.11

ID: Title
Priority
Scope

MATLAB
Version

MA Check
Prerequisites

Description

Rationale

4.3.7.12

ID: Title
Priority
Scope

MATLAB
Version

MA Check

jh_0109: Merge Blocks

jh_0109: Merge Blocks
Strongly Recommended

ORION
All

No
None

Care must be taken when using the Merge Block. There are a few rules of thumb
that must be followed when using merge blocks:

The signals entering a merge block must not branch off to any other block. The
merge block must be the signals’ only destination

When using Merge Blocks with buses:
o All buses must be absolutely identical. The number of elements, element

names, element order, element data type, and element size must match
exactly between all buses being merged

All buses must be of the same virtuality (i.e. all non-virtual or all virtual).
It is recommended to use non-virtual buses and create a bus object for the
buses being merged. This is the most fail safe way to prevent
inconsistencies.

All bus lines entering a merge block must not branch off to any other
block. The merge block must be the bus lines only destination

Do not use the Signal_Conversion block on signals feeding Merge
blocks. The Signal_Conversion block may create an intermediate
variable that is assigned every cycle. This may force the Merge block to
use the data from that signal, regardless of the state of the other signals.

O Readability O Verification and Validation
O Workflow O Code Generation
M Simulation

Last Change V1.1

mjc_0111: Direction of Subsystem

mjc_0111: Direction of Subsystem
Strongly recommended
ORION (modified J-MAAB jc_0111)

All

No

55

Prerequisites None
Subsystems must not be reversed except when used in feedback loops.

Correct
(O
Ini Dut! —1 {1)
¥ L b Outl
Subsystemn
ni Dutl
Subsysteml
L. 1
Description oM™
Lnit Delay
Correct
{1 —————————lnt
In Dt
" 2 Ot
Subsvystemn
L el —] Cuti ni
Z
Lt Delay Subsystemi
M Readability [0 Verification and Validation
Rationale O Workflow O Code Generation

0 Simulation
Last Change V2.0

4.3.8 Block Parameters

4.3.8.1 db_0112: Indexing
ID: Title db_0112: Indexing

Priority Strongly recommended
Scope MAAB

MA‘I_'LAB All

Version

MA Check Yes
Prerequisites None
One based indexing [1, 2, 3,...] is used for

e MATLAB
o Workspace variables and structures
Description e Local variables of m-functions
o Global variables
e Simulink

« Signal vectors and matrices
56

Parameter vectors and matrices

e M-coded S-Function input and output signal vectors and matrices
e M-coded S-Function parameter vectors and matrices

e M-coded S-Function local variables

Zero based Indexing [0, 1, 2, ...] is used for

Simulink

e C-coded S-Function input and output signal vectors and matrices
e C-coded S-Function input parameters

e C-coded S-Function parameter vectors and matrices

e C-coded S-Function local variables

Stateflow
o Custom c-code variables and structures
e Buses

Input and output signal vectors and matrices
Parameter vectors and matrices

Local variables

C-Code

o Local variables and structures

e Global variables

Model explorer view of Stateflow chart for setting the First Index

57

Data telemetryl
General | Description

Save final value to base workspace

First mdexl]|

Units

Descnpbon

Document link:

M Readability
M Workflow
O Simulation

Last Change V2.3

Rationale

Revert Help Apply

O Verification and Validation
M Code Generation

4.3.8.2 db_0110: Tunable parameters in basic blocks

ID: Title

Priority Strongly recommended
Scope MAAB

Version Al

MA Check |No

db_0110: Tunable parameters in basic blocks

58

Prerequisites None

All tunable parameters must be fed into the model through the Parameter input bus.
Tunable parameters must not be accessed from the Matlab workspace via constant

blocks, gain blocks, and other blocks that have parameter inputs.

Description
This standard ensures that the autocode will retain the parameter structure and
tunability.
M Readability [0 Verification and Validation
Rationale M Workflow M Code Generation
O Simulation

Last Change V2.1

4.3.9 Subsystems

4.3.9.1 jc_0201: Usable Characters for Subsystem Names
ID: Title jc_0201: Usable characters for Subsystem names

Priority Strongly recommended
Scope MAAB

MA‘I_'LAB Al

Version

MA Check |Yes
Prerequisites None
The names of all Subsystem blocks should conform to the following constraints:

FORM name:
o should not start with a number
« should not have blank spaces
e carriage returns are not allowed

ALLOWED name:
Description CHARACTERS |abcdefghijklmnopqgrstuvwxyz
P ABCDEFGHIJKLMNOPQRSTUVWXYZ

0123456789 _

UNDERSCORES name:
e can use underscores to separate parts
« cannot have more than one consecutive underscore
e cannot start with an underscore
e cannot end with an underscore

M Readability O Verification and Validation
Rationale M Workflow M Code Generation
O Simulation

Last Change V2.1

59

4.3.9.2 bn_0001 Subsystem name length limit

ID: Title
Priority
Scope

MATLAB
Version

MA Check
Prerequisites

Description

Rationale

Last Change

bn_0001: Subsystem Name Length Limit
Strongly recommended
ORION

All

Yes
jc_0201: Usable characters for Subsystem names

The names of all Subsystem blocks must be unique. Compiler limits must be
observed when creating subsystem names that are used in code or system filenames.

32 characters is the maximum limit

Example:
Subroutine_Function_Algortihm_Example becomes
Subroutine_Function_Algortihm_Ex
This_is_a_Really Long_Subsystem_Name becomes
A Really Long_Subsystem_Name

M Readability M Verification and Validation
OO Workflow M Code Generation
e Simulation

V2.1

4.3.9.3 hyl_0307: Use of subsystem name

ID: Title
Priority
Scope

MATLAB
Version

MA Check
Prerequisites

Description

hyl _0307: Use of subsystem name
Strongly recommended
ORION

All

Yes
None

No block shall be named "subsystem" (or "subsystem1" "subSystem1,” etc.) or have
“subsystem” in the name.

Example:
Incorrect

60

Inl a1 |

Filter_Subsystem

M Readability I Verification and Validation
Rationale M Workflow M Code Generation
O Simulation

Last Change V2.1

4.3.9.4 db_0144: Use of Subsystems
ID: Title db_0144: Use of Subsystems

Priority Strongly recommended
Scope MAAB

MA‘I_'LAB All

Version

MA Check |No

Prerequisites |INone

Blocks in a Simulink diagram should be grouped together into subsystems based
upon a functional decomposition of the algorithm, or portion thereof, represented in
the diagram.

Description |Grouping blocks into subsystems primarily for the purpose of saving space in the
diagram should be avoided. Each subsystem in the diagram should represent a unit
of functionality required to accomplish the purpose of the model or sub model.

M Readability M Verification and Validation
Rationale M Workflow M Code Generation
O Simulation

Last Change V2.2

4.3.9.5 jh_0049: Use of Model References or Reusable Subsystems
ID: Title jh_0049: Use of Model References or Reusable Subsystems

Priority Strongly recommended
Scope ORION

MA‘I_'LAB All

Version

MA Check |Yes
61

Prerequisites [jh_0202: Testable Unit

Description

Rationale

=] Function Block Parameters: Subsystem

Subsyskem

Select the settings For the subsystem block.
Pararmeters

Showe port labels |FromPortIcon

Read/rite permissions: |ReadWrite

Mame of error callback Function:

Permit hierarchical resolution: |All

Treat as atomic unit
[] Minimize algebraic loop occurrences

Sample kime (-1 For inherited):

-1

Only subsystems that reside in the ORION Library should be set to be a “Reusable
Function”. This setting is shown in the Subsystem Parameter Dialog window below.

%]

Real-Time Workshop system code: | Reusable Funckion

Real-Time Workshop Function name options: | &uto
Real-Time ‘Waorkshop File name options: | Auto
Memaory section for initializefterminate funckions: | Inherit from model

Memaory seckion for execution functions: |Inherit From model

\.} [Ok H Cancel H Help

J _sentv |

If a complex subsystem within a CSU is used multiple times it may be converted into
a standalone model (.mdl) and referenced via the model reference block. This will
ensure reusability of the autocode. Refer to jh_0202: Testable Units for a further
description of how do decompose a model using Model Reference.

eML functions may not be shared between CSUs or Model References directly. If an
eML function is used by multiple models, the eML function should be wrapped in a
Simulink model and called as a Model Reference that contains an eML block that
calls the function.

M Readability M Verification and Validation

62

M Workflow M Code Generation
O Simulation

Last Change (V1.1

4.3.9.6 jh_0050: Model References Simulation Mode
ID: Title jh_0050: Model References Simulation Mode

Priority Strongly recommended
Scope ORION

MATLAB All

Version

MA Check |No

Prerequisites none

Models that contain model reference blocks should have the blocks set to be in

“Accelerated” Model. This setting can be changed by right-clicking on a model

reference block, selecting ModelReference Parameters, and then selecting
Description |“Accelerator” for the Simulation mode.

See the GUI below:

63

=] Function Block Parameters: Veh_Mass_Props <@blade0 _ O X

~ModelReference

Reference the specified model. If the referenced model requires any
model arguments, enter them as a comma separated list. To refresh the
Model block after any graphical interface changes, select the block and
choose Refresh from the Context or Edit menu.

If the referenced model has more than one instance simulating in Normal

mode, you may need to set Mormal Mode Visibility to on for this Model

block. This can be controlled by going to the top model and selecting:
Edit = Model Blocks = Normal Mode Visibility.

This Model block can have variants where one active variant is used for
simulation. Each variant is a referenced model designated by its model
name and model arguments.

—Parameters

Model name:

| GMP_VMPE_Calc_Comp_MP_MR | | Browse._ | |Gpen Mudel|

Model arguments:

| l

Model argument values (for this instance):

| |

Simulation mode: [Acceleratur |v]

| =< Enable variants |

] J | DK | | QEHCE| | | H E|p| | &pph}"
-

The Simulation mode for a model reference block can be determined by the block
graphic. Model Reference blocks that are in “Accelerator” mode have filled in black
triangles on the corners of the block.

64

Veh_Mazs_Props
Model Reference Block — Accelerated Mode

Model Reference blocks that are in “Normal” mode have empty triangles on the
corners of the block.

Veh_Mazs_Props
Model Reference Block — Normal Mode

O Readability O Verification and Validation
Rationale O Workflow O Code Generation
M Simulation

Last Change V1.0

4.3.9.7 db_0146: Triggered, enabled, conditional Subsystems

ID: Title]db_0146: Triggered, enabled, conditional Subsystems

Priority \Strongly recommended
Scope MAAB

MA'I_'LAB Al

Version

MA Check Yes

Prerequisites |None

The blocks that define subsystems as either conditional or iterative should be located
at a consistent location at the top of the subsystem diagram. These are:

Function call
Enabled
Triggered

If / Else Action

Description

65

Exception: Only trigger blocks can be used for model reference models at the root
level. These trigger blocks can only be set to “function call” and only one is allowed
at the root level.

Correct
~lofx]

File Edit ‘iew Simulation Format Tools Help

DSsHS| &R a4 |22 r 5o om =],

.
D S

+
Ready [100% [[[FixedstepDiscrete v
Incorrect
1=
File Edit View Simulation Format Tools Help
DSEH& L E=R|E= 4 (22 » 5o [rem 5|,
O e
e o
Ready [100% [[FixedstepDiscrete v
M Readability M Verification and Validation
Rationale M Workflow O Code Generation

O Simulation

Last Change V2.1

4.3.9.8 jph_0010: Use of Masks

ID: Title jph_0010: Use of Masks

Priority ~ |Recommended

Scope ORION

66

MATLAB
Version

MA Check |No
Prerequisites

All

The use of “Masks” can greatly increase the readability of a Simulink model by
replacing the generic subsystem appearance with an icon that better illustrates the
underlying math. Masks are only permitted for Subsystem blocks and blocks in the
ORION Library and shall not be used anywhere else in a CSU model.

When creating Masks for subsystems, only the “Icon & Ports” tab may be modified in
the Mask Editor.

Mask Editor, : Subsystem

Icon & Ports | parameters | Initilization | Documentation

Oplions Icon Drawing commands
Block Frame
Yisible w

Icon Transparency

Opaque b
Ican Units

Autoscals “
Ican Rokation

Fixed “
Port Ratation

Default “

Description

Examples of drawing commands

Command | port_lahel (label specific ports) W
EaTl o)
Syntax paort_label'oukput!, 1, sy’
(o) (o) (o0) (oo]

Mask Editor

No entries shall be made in the “Parameters”, “Initialization”, or “Documentation”
tabs of the Mask Editor.

Mask “dialogs” are not permitted for non-ORION Library blocks. Mask dialogs are
automatically created by Simulink when parameters are added to a masked
Subsystem, therefore, adding parameters to a mask is not allowed.

All inports and outports of a subsystem shall be labeled with their symbolic
representation or underlying port name when masking a subsystem.

See the Appendix for “Subsystem Masking Methods and Guidelines” for more

67

information on how to create Masks.

Example of proper use of a Subsystem Mask:

Subsystem

M Readability M Verification and Validation

Rationale M Workflow O Code Generation

O Simulation

Last Change V1.0

4.3.9.9 hyl 0308: Use of reference model name

ID: Title |hy|_0308: Use of reference model name

Priority Strongly recommended
Scope ORION

MATLAB All

Version

MA Check Yes

Prerequisites |None

No block shall be named “referenced model” (or “referenced modell,”
referencedModell,” etc.).

Example

Incorrect
r

Description

Filter_Model_Ref

M Readability I Verification and Validation
Rationale M Workflow M Code Generation
1 Simulation

68

Last Change V2.0

4.3.10 Subsystem Patterns

The following rules illustrate sample patterns used in Simulink diagrams. As such they would
normally be part of a much larger Simulink diagram.

4.3.10.1 na_0012: Use of Switch vs. Case vs. If-Then-Else Action Subsystem

ID: Title na_0012: Use of Switch vs. Case vs. If-Then-Else Action Subsystem
Priority Strongly recommended

Scope MAAB
MA‘I_'LAB Al
Version

MA Check |No

Prerequisites |None

The Switch block:
e Should be used for modeling simple if-then-else structures if the associated
then and else actions involve only the assignment of constant values.

dauble
IF_“falue ————
boolean V[double
IF_Condition .-—I
double
Elze_'Walue

The if-then-else action subsystem construct:
e Should be used for modeling if-then-else structures if the associated then
and/or else actions require complicated computations. This will maximize
Description simulation efficiency and the efficiency of generated code (Note that even a
basic block, for example a table look-up, can require fairly complicated
computations.)

if{ut)
DynamicSlipFlagl_ else
tf h
f{}
Out1
TireSlipConst
Pl WheeiSpeed else (] Merge |——
»{EngSpeed Outt TireSlip
l:l":-.]

CalculateTireSlip

e Must be used for modeling if-then-else structures if the purpose of the
construct is to avoid an undesirable numerical computation, such as division
by zero.

69

e Should be used for modeling if-then-else structures if the explicit or implied
then or the else action is just to hold the associated output value(s).

In other cases, the degree of complexity of the then and/or else action computations
and the intelligence of the Simulink simulation and code generation engines will
determine the appropriate construct.

These statements also apply to more complicated nested and cascaded if-then-else
structures and case structure implementations.

Generally, the If/Then block, Case block, and Switch Simulink blocks can be used to
create the same logic functionality in a Simulink model. However, the autocode of
these may slightly differ. Here are some Example block constructs and the resulting
autocode to illustrate the differences. Pay special attention to the last example
involving a switch blocks and model reference blocks.

If/Then Block Example:

(ML) >
> o (| e
RN . S
Resulting Autocode:
if (IfThen test U.int j == 1U) {
IfThen test B.Merge3 = 333.0 * IfThen test U.data;
} else if (IfThen test U.int j == 2U) {
IfThen test B.Merge3 = 444.0 * IfThen test U.data;
} else {
if (IfThen test U.int j == 3U0) {

IfThen test B.Merge3 = 555.0 * IfThen test U.data;

}
}

Case Block Example:

R 1
CE i S -
CR - B

Resulting Autocode:

70

switch (Case test U.int o) {

case 1:

Case test B.Merge3 = 333.0 * Case test U.data;
break;

case 2:
Case test B.Merge3 = 444.0 * Case_ test U.data;
break;

case 3:

Case test B.Merge3 = 555.0 * Case test U.data;
break;

Switch Block Example:

........

Resulting Autocode:

switch (Switch test U.int j) {
case 1:
Switch test Y.Outportl
break;

333.0 * Switch test U.data;

case 2:
Switch test Y.Outportl
break;

444.0 * Switch test U.data;

default:
Switch test Y.Outportl = 555.0 * Switch test U.data;
break;

}

The switch case will autocode similarly to the If/Then or Case constructs with one
exception. If a subsystem related to a Switch block contains a Model Reference
block, this Model reference block will not be called from within the case statement.
The call to the model reference will occur on each pass, regardless of the outcome of
the logic. Only the data will be assigned within the case statement. This type of
construct should be avoided to prevent unnecessary computations.

Switch Block with Model Reference Example:

71

=
s v v

Resulting Autocode:

mr Mref (&Switch test U.data, &rtb Model Reference?l);
mr Mref (&Switch test U.data, &rtb Model Referenceld);
mr Mref (&Switch test U.data, &rtb Model Referenced);

switch (Switch test U.int j) {

case 1:
Switch test Y.Outport3 = rtb Model Reference2;
break;

case 2:
Switch test Y.Outport3
break;

rtb Model Reference3;

default:
Switch test Y.Outport3
break;

}

rtb Model Referenced;

M Readability O Verification and Validation
Rationale M Workflow O Code Generation
O Simulation

Last Change V3.0

4.3.10.2 db_0114: Simulink patterns for If-then-else-if constructs

ID: Title db_0114: Simulink patterns for If-then-else-if constructs
Priority Strongly recommended

Scope MAAB

MATLAB All

Version

MA Check No
Prerequisites |None

The following patterns should be used for If-then-else-if constructs within Simulink:

Description Equivalent Functionality ~ |Simulink pattern

72

IF THEN ELSE IF with
switch blocks

if (If_Condition) {
output_signal = If Value;

else if (Else_If Condition) {

output_signal = Else_If Value;

else { o
output_signal = Else_Value;

}

IF THEN ELSE IF
with if/then/else
subsystems:
if(Fault_1_Active &
Fault_2_Active)

{ Tod AT %
ErrMsg = SaftyCrit; ockn 1, i

else if (Fault_1_Active | — » ‘
Fault_2_Active) whacgs P51

ErrMsg = DriveWarn;
}

else

{
ErrMsg = NoFaults;

}

A maximum of 10 cases should be used with the pattern shown above. If there are
more than 10 cases, eML or Stateflow should be used to implement the logic.

M Readability O Verification and Validation
Rationale M Workflow M Code Generation
O Simulation

Last Change |V2.1

4.3.10.3 db_0115: Simulink patterns for case constructs

ID: Title db_0115: Simulink patterns for case constructs

Priority Strongly recommended
Scope MAAB

MA‘I_'LAB All

Version

MA Check No

73

Prerequisites None
The following patterns are used for case constructs within Simulink:
Equivalent Functionality Simulink Pattern

Case
With switch case block

switch (PRNDL_Enum)
{
case 1 T "
TgEstimate = ParkV;
break;
case 2
TgEstimae = RevV;
break; r
default
TgEstimate = NeutralV;
break;

¥

CASE
with multiport switch and
subsystems:

b BT T

Description

output_versionl =
function_version1(input_signal); i)
output_version2 =

function_version2(input_signal);
output_version3 = B Aty £
function_version3(input_signal); S ——— 5,
output_version4 = : |
function_version4(input_signal); | 1

St _sgnd olpdt el { S ’
nau_signe 3 utpul_signals outps_signal

switch (selection) { WORFRIM, reTtien]
case 1:
output_signal = output_version1; TRy e R T B
break;))
Case 2- PbEPINm Yersien
output_signal = output_version2;
break; e b B LRI E L g
case 3:

output_signal = output_version3;
break;

default:

output_signal = output_version4;

}

LRI R M Wriiend

74

CASE
with multiport switch and
enabled subsystems:

switch (selection) {

case 1: S -
output_versionl = '
function_versionl(input_signal); [Ty

output_signal = output_versioni; SN CRSNI SRrSmp oy EE
break; > el i
case 2: »
output_version2 = | | “—‘—
function_version2(input_signal); Posr] ;
output_signal = output_version2; e B
break;
case 3: T b e S T
output_version3 = .
function_version3(input_signal); (EE p i o =1)
output_signal = output_version3; I '\T e SR
break;

default:

output_version4 =
function_version4(input_signal);
output_signal = output_version4;

}

A maximum of 10 cases should be used with the pattern shown above. If there are
more than 10 cases, eML or Stateflow should be used to implement the logic.

M Readability M Verification and Validation
Rationale M Workflow O Code Generation
O Simulation
Last Change V2.1
4.3.104 bn_0003: Use of If-Then-Else Action Subsystem to Replace Multiple
Switches
ID: Title bn_0003: Use of If-Then-Else Action Subsystem to Replace Multiple Switches
Priority Strongly recommended
Scope ORION
MA'I_'LAB All
Version
MA Check |No

Prerequisites

Description

na_0012: Use of Switch vs. If-Then-Else Action Subsystem
db_0114: Simulink patterns for If-then-else-if constructs

The use of multiple switches must be appropriate to the degree of complexity of the
then and/or else action computations and the intelligence of the Simulink simulation
and code generation engines. A switch construct of more than 3 switches (1 IF path,
2 ELSE-IF paths, and 1 ELSE) must use an if-then construct for readability.

75

A 5 switch construct such as this. May be fine for simple computatlons

Standards Txampbe, Switch 2usmpie Switehe =101 x|
ammmmww
0 fﬂ‘ ERA - HRCESSE 3 o SR S T (e ARG REA@RE
O—]
o

Swivn

=1

Value 8 Add

Product

Swtcnd
i 0
YD Prooui

Fwind
Value_07 D’

ottt

Resdy i | f o 2

But, the structure is more readable using if-then block and actions subsystems.

76

LT standards_ Deample, Switch_Euasmpde 1 Thens * - 1o x|
Ele [0 Yew Swdvon Fgmat Jock o
D@FEH@ "8 &= 22 = b =fin [N EARG S REREE
wun
O
i [o
OptionA
eHeul)
- = e
C
OptiorE
efsoifl u3)
E Optione
ElsElfl ud) Méerge |_.®
W
o OptionD
H 4l us)
@ s OptionE
ca el
|
Dt
It
Default
Mearge
Rewiy N ot

These statements also apply to more complicated nested and cascaded if-then-else
structures and case structure implementations.

M Readability O Verification and Validation
Rationale M Workflow 0 Code Generation
[0 Simulation

Last Change V2.0

4.3.10.5 db_0116: Simulink patterns for logical constructs with logical blocks

ID: Title |db_0116: Simulink patterns for logical constructs with logical blocks

Priority Strongly recommended
Scope MAAB

MATLAB All

Version

MA Check |No

Prerequisites None

77

The following patterns are used for logical combinations within Simulink:

Equivalent Functionality Simulink pattern

Combination of logical signals:

[y
|/
{ARD T
nbina — > } >
conjunctive —¥

Description {OR}

Combination of logical signals:
disjunctive :D—'

{AND}

M Readability M Verification and Validation
Rationale M Workflow [0 Code Generation
[0 Simulation

Last Change V1.1

4.3.10.6 db_0117: Simulink patterns for vector signals

ID: Title db_0117: Simulink patterns for vector signals
Priority Strongly recommended

Scope MAAB

MATLAB All

Version

MA Check No
Prerequisites |None
Description | The following patterns are used for vector signals within Simulink:

78

output_signal

output_signal

Equivalent Functionality

Vector loop:

for (i=0; i>input_vector_size; i++)
{

output_vector(i) = input_vector(i)
* tunable_parameter_value;

¥

Vector loop:

for (i=0; i>input_vector_size; i++)
{

output_vector(i) = input_vector(i)
* tunable_parameter_vector(i);

}

Vector loop:

output_signal = 1;

for (i=0; i>input_vector_size; i++)
{

output_signal = output_signal *
input_vector(i);

ks

Vector loop:

output_signal = 1;

for (i=0; i>input_vector_size; i++)
{

output_signal = output_signal /
input_vector(i);

Vector loop:

for (i=0; i>input_vector_size; i++)
{

output_vector(i) = input_vector(i)
+ tunable_parameter_value;

}

Vector loop:

for (i=0; i>input_vector_size; i++)
{

output_vector(i) = input_vector(i)
+ tunable_parameter_vector(i);

¥

Vector loop:

output_signal = 0;

for (i=0; i>input_vector_size; i++)
{

output_signal = output_signal +
input_vector(i);

79

Simulink Pattern

e NN ahE_paramelen_sag =
npul_secior - —

_ — DU _weciar

— U000 _pATar '!rri-(“!—*' _; —

input_vactor

Iy amaid

alll

Product

input_wectar output_signal

-
input_vector TT
Froduct

output_signal

input_vectar

output_wector
| tunable_parameter_value

Zonstant

input_vectar

‘tunable_parameter_vectar

Constant

output_signal

. 5
input_vectar

Sum

¥

Vector loop:
output_signal = 0;
for (i=0; i>input_vector_size; i++)

oy .
{ .) input_wectar output_signal
output_signal = output_signal -

, . Sum
input_vector(i);
input_signal min n -
> output_signal_min
M@x
L
- - - - Z B
Minimum or maximum of a signal Unit_Delay
or a vector over time: N
input_vector max
i output_vector_max
M@x
T e
-
Unit_Delay
TALagnal : * | |
__’{ '_ — up A
Unit_Delay E.r[::‘;v:
Change event of a signal or a PO veckr L.F | -
L] > Outpat_vector_charnge
vector: 1 g
_Dalay .’,‘p:‘,‘;,~,:
L B D) S—
|‘ - : l._‘;:_“v. Apeat_veclr_change
o oraloe
M Readabilit M Verification and Validation

Rationale y M Code Generation
M Workflow

[0 Simulation
Last Change V1.0

4.3.10.7 jc_0351: Methods of initialization
ID: Title jc_0351: Methods of initialization

Priority Recommended
Scope MAAB
MATLAB All

Version

MA Check |No
Prerequisites |db_0140: Display of block parameters
Description |Simple initialization:

80

o Blocks such as the Unit Delay, that have an initial value field can be used to
set simple initial values.
o To determine if the initial value needs to be displayed see db_0140.

Example
t
n Outl
] <initial=0*
-
z
Unit Crelay
<initial=0*

Initialization that requires computation:
For complex initializations the following rules hold.
e The initialization should be performed in a separate subsystem.
e The initialization subsystem should have a name that indicates that
initialization is performed by the subsystem.

Complex initializations can either be done at a local level (Example A) or at a global
level (Example B) or a combination.

Example A
T e ¥
i
If
O T
Initilize_Func_A L o h_
* - == Lol
: slzz {1 -
Func_A_Running
1
Example B
Initialize l EventBl Task4msl
& & &
Initialize_function TimingB_function Task4ms_function
Priority =1 Priority =2 Priority =3
[J Readability [Verification and Validation
Rationale M Workflow [0 Code Generation

1 Simulation
Last Change V2.0

81

4.3.11

43.11.1
ID: Title
Priority
Scope

MATLAB
Version

MA Check
Prerequisites

Description

Rationale

Last Change

43.11.2
ID: Title
Priority
Scope

MATLAB
Version

MA Check
Prerequisites

Description

Rationale

Last Change

Enumerations

dm_0002: Enumerated Types Usage

dm_0002: Enumerated Types Usage
Mandatory
Orion

2010B and Later
No
None

Enumeration types shall be used instead of integer types (and constants) to select
from a limitied series of choices (SDP OCS Rule 137). This includes
implementation of enumerated types throughout the code.

M Readability O Verification and Validation
M Workflow M Code Generation
[0 Simulation

V2.1

dm_0003: Enumerated Types Header Files

dm_0003: Enumerated Types Header Files
Mandatory
Orion

2010B and Later

Yes
None

When defining an enumerated type within MATLAB, the “getHeaderFile” method
must be declared such that the return value follows the format of:

‘SmlkEnum <EnumType>.h’
This will ensure that the RTW Auto-Coder completes a #include of this file instead
of generating it’s only declaration within the <Model Reference>_types.h file.
Additionally, this header file must be created (using generate_enum_header.m) to
be consistent with the Orion Standard of generating headers files separate from
RTW to facilitate communication of interfaces with Rhapsody.

M Readability O Verification and Validation
M Workflow M Code Generation
[0 Simulation

V2.1

82

4.3.11.3
ID: Title
Priority
Scope

MATLAB
Version

MA Check
Prerequisites

Description

Rationale

Last Change

43114

ID: Title
Priority
Scope
MATLAB

dm_0004: Enumerated Types RTW Settings

dm_0004: Enumerated Types RTW Settings
Mandatory
Orion

2010B and Later

Yes
None

When defining an enumerated type within MATLAB, the
“addClassNameToEnumNames” method must be declared such that the return value
is “true”. This will cause the RTW auto-coder to pre-pend the enumerations with
the type definition to prevent name conflicts with identifiers in Real-Time
Workshop generated code.

Example:
MATLAB Declaration:

enumeration
IDLE (1)
AUTO ENTRY CM RCS CNTRL (2)
AUTO TOUCHDOWN ROLL CNTRL (4)

end

function retvVal = addClassNameToEnumNames ()
retVal = true;

end

Generated Header File Declaration:

typedef enum { /* CNC ModeEnum */
CNC_ModeEnum IDLE =1,
CNC_ModeEnum_AUTO_ENTRY CM RCS CNTRL = 2,
CNC_ModeEnum_AUTO_TOUCHDOWN ROLL CNTRL = 4

} CNC_ModeEnum;

M Readability O Verification and Validation
M Workflow M Code Generation
[0 Simulation

V2.1

dm_0005: Enumerated Types Description

dm_0005: Enumerated Types Description
Recommended

Orion

2010B and Later

83

Version
MA Check Yes
Prerequisites |None

When defining an enumerated type within MATLAB, the “getDescription” method
should return a value that enables the parsing of both the typedef and element
descriptions. The format shall consist of the following:

<enumeration1>: <enumerationl description> \n

<enumeration2>: <enumeration2 description>\n

etc
Example:
function retVal = getDescription|()
Descﬁpﬁon $ GETDESCRIPTION Optional string to describe enumerations

retVal = sprintf([...

'CNC_ModeEnum: This Enumeration describes the Modes used by
the CM Controls (CNC) Domain\n', ...

'"IDLE: No Domain CSUs are called\n',...

'"AUTO ENTRY CM RCS_CNTRL: The CM RCS Control Law CSU
generetes commands for CM Thruster Logic\n',...

'AUTO TOUCHDOWN ROLL CNTRL: The CM Roll Control CSU
generated commands for CM Thruster Logic\n'...

1)

end
M Readability O Verification and Validation
Rationale M Workflow M Code Generation
O Simulation

Last Change |V2.1

4.3.11.5 jr_0003: Enumeration Name Convention

ID: Title jr_0003: Enumeration Name Convention
Priority Recommended

Scope Orion

MATLAB

. 2010B and Later
Version

MA Check Yes
Prerequisites None

Enumeration names should be defined using all CAPS with names separated by
underscores. Enumerated typedef should follow the same naming convention
outlined Standard dm_0001.

Description Examples:
classdef (Enumeration) CNC ModeEnum < Simulink.IntEnumType

enumeration
IDLE (1)
AUTO ENTRY CM RCS CNTRL (2)
AUTO TOUCHDOWN ROLL CNTRL (4)

84

Rationale

Last Change

end

end
M Readability [0 Verification and Validation
M Workflow M Code Generation
O Simulation

V2.1

4.4 Model Architecture

Basic Blocks

This document uses the term “Basic Blocks” to refer to blocks from the ORION Library; examples
of basic blocks are shown below.

+ up
I S e I O O O R).
Inpart —

Canstant Constant_Gain Sum Switchd I il ath_Abs
{double} fuz w= 3 Faturation_Dynamic

4.4.1 Simulink®, eML, and Stateflow® Partitioning

4.4.1.1 jh_0202: Testable Units

ID: Title
Priority
Scope

MATLAB
Version

MA Check
Prerequisites

Description

jh_0202: Testable Unit
Mandatory
ORION

All

No

Testable Units

There are two forms of testable units. In Simulink, a testable unit is an individual
model or eML function that can be executed separately without modification. For
the autocode, a testable unit is simply a function. Ideally, each testable unit in
Simulink will translate into a single testable unit in the autocode. This approach
aids in the management of complexity and maximizes unit test reuse between model
and autocode. Testable units should be limited in functional scope to one or a few
related system functions.

85

Individually Testable Components in Simulink
e Individual Simulink Models (CSUs, Model References(MR) aka “dot-mdl”
files)
e Externally saved Matlab Functions (“dot-m” files)
Non-Individually Testable Components in Simulink
e Subsystems (including atomic)

e Stateflow charts
e locally defined embedded matlab functions (those that exist only in the

model, not as external *.m files)

The illustration below shows the testable and non-testable components of a
Simulink model.

a—rin O] ———o{datn
IN_1 i

[k
Subsysternr I 22 l

my_Nretioe —D
ouUT_1

int Ot ——®{paran

Atormic_Subsystem J 2 ~
Charnt

Externally_Defined_eML_function

IN_2

Testable Unit

] // rr.\o:m_r?ere.'eq:ew — —y
e l) niiind_fumctisd yf —————— »iinl ouTt ———ED
oUT_2
b e
scally_Defined e _functicn PRI
Non-testable
Units
\S * i 4
)= | D Madbad 115
Tou
Tres

Furthermore, the resulting autocode for a testable component will be a single stand-
alone function. The illustration below shows where the resulting code is placed for

units in a model.

86

1 Date Vettas
{stoncs: 1

Model_CSU.cpp
Model_CSU ()

Externally_defined_eML() Model_Reference()

As seen by the above illustration:

e The MRB will autocode into a separate cpp file with an individually testable
function. Each .mdl file will generate a separate .cpp.

e Externally defined eML functions (that include the eml.inline(‘never’);
declaration) will autocode into the main cpp file as a separate function that is
individually testable

e All other blocks will be “inlined” into the main cpp file as a part of the main
cpp function.

Note: there are some ORION library utility functions and atomic subsystems/charts
that are configured to autocode as separate functions.

Important Note: All Externally defined *.m files (“dot-m”) are Testable units and
should be represented as a single function in the autocode. An Embedded Matlab
function will only be autocoded as a separate function if the following declaration is
present after the function call:

eml.inline ('never');

For example:

function [att out] = NVA EKF update ref att(phi, att in)
SHeml
eml.inline ('never');

87

Rationale

Last Change

A further description of the ORION Definition of a “Testable Unit” can be found
within the “GNC Model Development Cyclomatic Complexity Guidelines” memo
(Doc #: CEV-GN&C-11-014).

Link on ICE

https://ice.exploration.nasa.gov/Windchill/netmarkets/jsp/document/view.jsp?oid=d
ocument~wt.doc. WTDocument%3A2240757958&u8=1

M Readability M Verification and Validation
M Workflow M Code Generation
M Simulation

V1.0

4.4.1.2 na_0006: Guidelines for mixed use of Simulink and Stateflow

ID: Title
Priority
Scope

MATLAB
Version

MA Check
Prerequisites

Description

na_0006: Guidelines for mixed use of Simulink and Stateflow
Recommended
MAAB

All

No
none

The choice of whether to use Simulink or Stateflow to model a given portion of the
control algorithm functionality should be driven by the nature of the behavior being
modeled.
« If the function primarily involves complicated logical operations, Stateflow
should be used.
o Stateflow should be used to implement modal logic — where the
control function to be performed at the current time depends on a
combination of past and present logical conditions.
 If the function primarily involves numerical operations, Simulink or
Embedded Matlab should be used.

Specifics:
« If the primary nature of the function is logical, but some simple numerical
calculations are done to support the logic, it is preferable to implement the
simple numerical functions using the Stateflow action language.

88

» Statellow {subs hart) na0006part 1/ Chart. Veludest ek AN =181
Bl Edt VYowr Jrdtion look &d° Helo : S !
CES | i mB |+ W v v WS E|"
A
! ﬁronb\xleﬁ.c:wan onCountsr B
® .
) = 2]
(Dﬂ
E i""':‘ nvatianCe ‘—""I [ActivationCond| / Embedded
, ¢ — simple
(Activated i
g Lp_ntr,r ActivationCt = ActivationCt 'Ai'/]/ math Opel'atlon
100% \ J ,_'.
Ll D™
| Mave

« If the primary nature of the function is numerical, but some simple logical
operations are done to support the arithmetic, it is preferable to implement
the simple logical functions within Simulink.

lnanmv,qmrtz ‘Subsystem/Subsystem * P, ...lnl_!i

OIS E@|) 58| e 202 b afor e o

T R

FosdZepOucrete

Embedded
simple
logic operations

 If the primary nature of the function is logical, and some complicated
numerical calculations must be done to support the logic, a Simulink
subsystem should be used to implement the numerical calculations. Stateflow
should invoke the execution of this subsystem using a function-call.

89

Statellow (sulbschart) CARSLFre

wnSF_Trans_glt/Chaet e TMUSIRIRRI [=: £ .1 |

B Y

CHS| e -

, ': UprTolLimitTrap

{Th_m1=ul,
Tol_In2 = uZ,
MyTEILKURFC)

|

o

oy T
S

MTHUFC

|
.
oD '
e *
tencsan ()
al_ e
T ere e
W
WTRILAP FC Sudayr

L

90

i
AR IR N IR A IR
L Toicaic ? N
Ap)

antry. ysf =0,
J
ToICalcCond) I:r.,‘._.,‘t»' nd)
g |
Cp By
dunng Thi_nt = ul
Thl_In2 = u2
MV ToIL M ik
ysf=ul;
J
‘.k):
L] 14
| Move

[Tl nan006part s =

EE T o -ty Tooks

teb

=12l x

DSE® * @ &s |2 2 b o fem = DNAS - B

U i s |
My TRLMWIRFCS |
p 2 \
ot {1 -
LY o) o e L) ‘
el ¢
tecsas
l o et]
«Tbi_Iet>
(E a2 f el e S
X k" T wd > ¥
T | <Thl_ts2»
7 e I STonADy PE S
] MyTeLuptcs |
) — s
Chant .E
Pansy [100% Furmtitalscrat A
°

in Stateflow.)

Incorrect

Stateflow should be used to implement modal logic — where the control
function to be performed at the current time depends on a combination of
past and present logical conditions. (If there is a need to store the result
of a logical condition test in Simulink, for example, by storing a flag, this is
one indicator of the presence of modal logic — that would be better modeled

91

Lackin Tatie

g—’l UuRl-;F e

| 1 vmm.g_‘

Correct

L | na0006part6,/SF Tenplement atio

nuymmmu

DCE® L@ 2P 22| b spu [Blmum@mlnan

Unfolil®eshlond UnfaglC

&

NiTolnWeshCond NLRsgFC

@ TN IahL T Candr

L%l >

e - G

NLReg Funisorcall
Suboyetem

(s
| S

1)
[0, TotinThreCeond) [T TrmCond]
1

MR R
: D
IR J

. -
e =

92

« Simulink should be used to implement numerical expressions containing
continuously-valued states, e.g., difference equations, integrals, derivatives,
and filters.

Refer to the “Modeling Guidelines Chart” in the Appendix for a table detailing the
proper algorithm type implementation for the Simulink/Stateflow/eML tools.

M Readability M Verification and Validation
Rationale M Workflow M Code Generation
M Simulation

Last Change V2.1

4.4.1.3 na_0007: Guidelines for use of Flow Charts, Truth Tables and State Machines
ID: Title na_0007: Guidelines for use of Flow Charts, Truth Tables and State Machines

Priority Recommended
Scope MAAB
MA‘I_'LAB All

Version

MA Check |No

Prerequisites |na_0006: Guidelines for Mixed use of Simulink and Stateflow

Within Stateflow, the choice of whether to utilize a flow chart or a state chart to
model a given portion of the control algorithm functionality should be driven by the
nature of the behavior being modeled.

« If the primary nature of the function segment is to calculate modes of
operation or discrete-valued states, then state charts should be used. Some
examples are a diagnostic model with pass, fail, abort, and conflict states, or a
Description model that calculates different modes of operation for a control algorithm.
« If the primary nature of the function segment involves if-then-else statements,
then flowcharts or truth tables should be used.

Specifics:
« If the primary nature of the function segment is to calculate modes or states,
but if-then-else statements are required, it is recommended that a flow chart
be added to a state within the state chart. (refer to 7.5 Flowchart Patterns)

M Readability M Verification and Validation
Rationale M Workflow M Code Generation
M Simulation

Last Change V2.0

4.4.1.4 im_0001: Guidelines for mixed use of Simulink and eML
ID: Title im_0001: Guidelines for mixed use of Simulink and eML
93

Priority Recommended

Scope ORION
MA‘I_'LAB All
Version

MA Check |No

Prerequisites None

The choice of whether to use Simulink or eML to model a given portion of the
control algorithm functionality should be driven by the nature of the behavior being
modeled.

There is no hard and fast rule for when eML should be used versus Simulink except
for modeling concepts that are difficult to implement in a graphical environment (e.qg.
iterative loops). eML could be used to simplify a cluttered diagram by implementing
low level math.

. Need to avoid a straight ¢ to .m conversion activity by the GN&C developers.
Description

PA-1 Example:

* NAV100HzCalculations represents one CSU within the 100 Hz rate group within
the NAV domain

» There are additional CSUs at the 100 Hz rate group layer

« Note that data stores usage is not in the current standards and guidelines
document

94

[TINAY_Aavigation Demcute_NAY_100Mz_Process_1st/SAYI000Caloulstions * =10

Bl G4 Yo Geedsion Fove Jod tive

DISHE L@ |se g < = » sfoo frms =l HHMDE - REEE

Execute_NAY_100z_Process_ist/ NAV100HzCalcuations

TR l i Tl v I

'1 "
4
4 h
._;m-_ SIM M NAV_b Spfenty
HAV_S1005 Lk

Compatn

wes]
WA b SRty

Wewgie

A4
o n
TV SRSEIVRIIR Ay ss——
SHE_muanbau " e >@
ISLARRaMNRARILL | gdrine sy b Fiate iy | INAV_TiSnincAttte il ateD e sy
[scmarmion sy
AN foeronfiody IOV 3 ;.
[e Pusedody AV FilncedAcenbeatia sfledy
S_Mutelall e = :
. Ascal AR TN terng

oady L I

NAV100Hz Calculations is decomposed into “AttitudeRates” and “Acceleration”

LINAY Navigation,.. NAY 1 00HCaloulistsans /ACclAniRateFiltering * o

B £t Wew Swishon Fomst lods thp

DGR L @ w2 p sfin [ims] HNmBDS o RER
Exacute_NAV_100Hz_Process_1st/ NAV100HzCaculations / AccelAndRateFitanng

NAV_WotslrAlguOiiae

oA AtttaFateBody |
AV _Azited oR ate Aoty Nt Fimered s s de R Body
QT WAV _FiBstedAtindeRateiady

PAV._

AN GaFates

NNt body |

KAV _Ascel eabianBodyt NAS_FRamveiucaiecion Pody
N Aocabaration bedy 1 NAV_F iBaredaconiarationBady
b Accaleratan
Saady oo [[FundSlaplucain 4

An eML block performs the 8" order filtering function

« NAV50HzCalculations represents a second CSU within the 100 Hz rate group
within the NAV domain

« Simple Stateflow chart is being used to execute drogue detection logic

* Note that some implementation aspects (such as NAV mode in this example) is

being moved a level above the CSU

95

(M- ¥ TR RS0 SEERERE S Tey re— N RMRe RREE

2 onn vt _NAY _20H2 Preceas . e
e [E]
o o oD
+
W
e e——
)
= -
. s I e)
images———I B .\..._....fI [) X
o " - -
...... e o PUGUETE ¥~ 3 ———te
I i | f b
53 P +
v R e | bt P N L 1 .‘,,7.2_,_,
PR P open——
x ot
.—ET_,(o lrae E Py e S N R i ..
-
o rm— gD
s e | - ey - BT S e e—
o b s
- e
o e~ O
o i e S aze) =)
b e S S ansromii ___z._
=y -
T e i W —— ...
3
[ol
peat o [ke

DrogueChutelJettisonLogic is implemented as Simulink blocks

afli=)
Wy Peien fyme Jeb b
DiRA® V@ wp o sy e e HSmnd . mRAme
Emiute_NAV_SIHZ_Froceds_nd ! TogsOnme Nansidog o
I7il
e
o— gy |
il il T
= P e e—
E— - | | ———-
LT } Lo — e | (.S
s Pt S e i _{]I ol g S
=
seon L S S L 1 S

Refer to the “Modeling Guidelines Chart” in the Appendix for a table detailing the
proper algorithm type implementation for the Simulink/Stateflow/eML tools.

Rationale

M Readability
M Workflow

M Simulation

M Verification and Validation
M Code Generation

Last Change V2.2

4.4.1.5 jh_0200: Guidelines for Managing Model Complexity

ID: Title

|jh_0200: Guidelines for Managing Model Complexity

Priority

‘Mandatory

96

Scope

MATLAB
Version

MA Check
Prerequisites

Description

Rationale

Last Change

ORION
All

No
none
The developer shall manage the model complexity in accordance with the “GNC

Model Development Cyclomatic Complexity Guidelines” memo (Doc #: CEV-
GN&C-11-014).

Link on ICE:

https://ice.exploration.nasa.gov/confluence/pages/worddav/preview.action?fileName
=ErrorHandlingGuidance.docx&pageld=106041166

M Readability M Verification and Validation
M Workflow M Code Generation
M Simulation

V1.0

4.4.1.6 ek_0010: Simulink algorithm States recommendations

ID: Title
Priority
Scope

MATLAB
Version

MA Check
Prerequisites

Description

ek _0010: Matlab/Simulink algorithm States recommendations
Strongly recommended
ORION

All

No

None

Algorithm states may be implemented using 1 of 3 possible options :
¢ ‘Standard’ Simulink
o Do not use the “Data Store Memory” blocks
o Recommend the use of “unit delay” blocks
= Unit delay blocks visualizes the feedback loop w/ states
e A caution is that it can also make the diagram harder to read
= multiple (independent) ‘states’ structures may be passed back in the
feedback path, if necessary.
e Facilitates reset capability
“unit delay” blocks will most likely require restart a capability — use block with
restart trigger & external ICs
o External states will be loaded from the “Parameter Bus”
= CSU will be a model reference block — parameter bus will be passed
by reference.
o Init trigger condition will come as an input on the “Input Bus”
= Multiple initialization types may be implemented through the use of
different initialization inputs and/or initialization enumeration(s)
o Forces the creation of Simulink ‘State’ buses, as well as Inputs / Outputs /
Parameters

O

97

https://ice.exploration.nasa.gov/confluence/pages/worddav/preview.action?fileName=ErrorHandlingGuidance.docx&pageId=106041166
https://ice.exploration.nasa.gov/confluence/pages/worddav/preview.action?fileName=ErrorHandlingGuidance.docx&pageId=106041166

e Embedded Matlab
o 1) Recommend use of persistent (i.e., ‘static’) data structure(s) at eML block
level, but not below
» Persistent structures should not be used below the eML block level
to keep external m-functions reentrant.
» Pass states & parameters via structures into any m-file subfunctions
which require them
= Keeping persistent structures at eML block level permits different
copies of the eML block to be called from different locations.
= Using this method, algorithm developers will not need to create
Simulink State buses, since the states can be represented internally
to the block.
o 2) another option restricts the use of ‘persistent’ data structs
= States would be handled as described above using the unit delay
block
= Does not alleviate any of the concerns/issues with states internal to
an eML block described in 1)
= Requires creation of the states bus
o Stateflow
o Useful for some algorithms which require internal Moding
o Should capture the logic of an algorithm only —
= Math is reserved for external subsystems or eML functions.
= Cannot easily visualize data flow within Stateflow, only logical flow.
o Stateflow can be interfaced directly to eML
Stateflow can be used to trigger subsystems
o Internal States may be required in a Stateflow model (e.g., a persistence
counters, latching logic, etc...).
= May also be handled using external unit delay blocks as described
above — this option requires creating state buses.

o

M Readability O Verification and Validation
Rationale O Workflow M Code Generation
M Simulation

Last Change V1.0

4.4.2 Subsystem Hierarchies

4.4.2.1 mdb_0143: Similar block types on the model levels
ID: Title mdb_0143: Similar block types on the model levels

Priority Recommended

Scope ORION (modified NA-MAAB db_0143)
MA'I_'LAB All

Version

MA Check |Yes
Prerequisites |None

Every level of a model must be designed with building blocks of the same type. (i.e.

Description only subsystems or only basic blocks).

98

Blocks which can be placed on every model level:

Inport
Outport
Enable (not on highest model

level) .
Trigger (not on highest model Note: Trigger and Enable blocks cannot be placed at

level) the root level. Enable blocks cannot be placed at the
MUx top level of Model Reference Systems

Demux

Bus Selector > M . >0 b
Bus Creator T o &
Selector
Ground
Terminator
From
Goto o,
Switch =/)
Multiport Switch
Merge

Unit Delay

Rate Transition
Type Conversion
Data Store Memory
If block

Case block

M Readability M Verification and Validation
Rationale M Workflow O Code Generation
O Simulation

Last Change (V2.1

syt b

il
seaenn

]
(]
<
1o

onvest

1]
jpyEs

~ Mege p °

4.4.3 ORION GN&C Model Architecture Decomposition
This section is specific to the architecture used in the ORION GN&C models.

4.4.3.1 im_0015: ORION GN&C Model Architecture

ID: Title im_0015: ORION GN&C Model Architecture
Priority Mandatory

Scope ORION
MA‘I_’LAB All
Version

MA Check |No

Prerequisites None
Description |+ The model hierarchy should correspond to the functional structure of the overall

99

GN&C system.

* Model references shall be used for each domain and each CSU.

* Blocks in a Simulink diagram should be grouped together into subsystems based
upon a functional decomposition of the algorithm, or portion thereof, represented
in the diagram.

Simulink
Project | ... |SuscSystem |
. . 1
Demain | Domalin_A | Domain_B
Rate |]
Groups Domain_aA_Rate1] I Domain_A_Rate2 |
CSUs
............... . .
EUb'ﬁyﬁl‘EmE. Funcinen_B | ,_. Funition_E] _.- Funelion &] Fiar
Libraries & - : = - =
Utilities Function_C | L_{ Function_F | L Function_ H
* Each domain contains multiple rate groups as necessary,
« CEUsz andtheir children run at the rate associatedwith the parent domain rate group
M Readability M Verification and Validation
Rationale M Workflow M Code Generation
M Simulation

Last Change V1.0

4.4.3.2 im_0003: Controller model

ID: Title im_0003: Controller model
Priority Mandatory

Scope ORION
MA‘I_'LAB Al
Version

MA Check |No

Prerequisites None

Control models are organized using the following hierarchical structure.
» Top layer / root level
Description » Trigger layer
» Structure layer
» Data flow layer

0O Readability O Verification and Validation
Rationale M Workflow O Code Generation
O Simulation

100

Last Change V2.1

4.4.3.3 im_0004: Top layer / root level

ID: Title im_0004: Top layer / root level
Priority Mandatory

Scope ORION
MA‘I_'LAB All
Version

MA Check |No

Prerequisites None

The top layer comprises the following:
* GN&C process scheduler
* GN&C executive
* GN&C domains
Description ' The GN&C executive and GN&C domains are Function-Call Subsystems and the
GN&C process scheduler acts as the functional call initiator.
The process scheduler is a Stateflow chart that calls each of the domains at the model

base rate.
[0 Readability [0 Verification and Validation
Rationale M Workflow [0 Code Generation

O Simulation
Last Change V2.1

4.4.3.4 im_0005: Trigger layer
ID: Title im_0005: Trigger layer

Priority Mandatory
Scope ORION
MA‘I_'LAB All
Version

MA Check |No

Prerequisites |None

There are two trigger layers below the top layer.

The first trigger layer corresponds to the domain rate group layer. Each domain rate
group is represented by a Triggered Subsystem that is called by the process scheduler.
The process scheduler models the ARINC process table and is not included in the
auto-coded model.

The second trigger layer corresponds to the CSU execution layer. Each CSU within a
rate group is represented by a Model Reference block. The CSUs are activated via a
function-call signal according to the domain mode for the current GN&C activity. The
domain mode is defined by the GN&C executive at the top layer. Domain level and
CSU level initialization also occurs at this level.

101

Description

Rationale

M Readability [0 Verification and Validation
M Workflow M Code Generation
[0 Simulation

Last Change V2.1

4.4.3.5 im_0006: Structure layer

\ID: Title \im_0006: Structure layer
Priority ‘Mandatory

Scope ORION

Vasor Al

MA Check No

Prerequisites None

Description

The structure layer contains the first level of functional decomposition for each CSU.
Depending upon the complexity of the CSU, there may be one or multiple structure

layers with a functional decomposition occurring at each successive layer.

At the very first CSU structure layer, junction boxes are used to consolidate multiple
input buses and multiple parameter buses into a single input bus and single parameter

bus respectively.

Flo Et Yew Smuaton Famst Took oD
@® =

DEES 5 Flo =ir] e D ReDSH RERES

Erve_CMRase T igettad

NVa_ABSSUA_OUT omd_unil_tv_ECH

SMP_MASEE _OUT
GOE_CNRTG_IN_JBox

Cti_CME2iee TasgetGald

GUE_CMRTG_PRM
] 18
VRS |

SOE_CMATS_OUT

GOE_CMRTG_PRW_JBax OO _CMName T argetOud

Rmady oo [lodeds

Examples:

Each CSU should be decomposed into lower level functions.

102

domam CSU_A/Domsn CSU A Y » ‘IH’LI

pg__;g Ve Swdeon Fomet fook Hb 0 i
NeR@ « @ &3 v »foo [Nems A EmRES . REE®

]

Lacet

gt

Camooaent_A

A4

Lass

(B) Ospet foeppf 1)

»
»
CSU_A_Qutpt
' ()
[y Cemponsart C
D e
o
CSU_A_irgut
L
Camgosent B
K| [13]
Peady [v0cF I ode3 4

A single eML block should not contain the algorithm of the entire CSU.
- , o x}

Dosnain CSU_B/Detmain CSU B *

PG - Sew - Smiston fovist (T D

NSRS ' @B« Db sfos e ZAMDS) REES®

O =
csuU_B_nwpd

(N WW—e)
CHU_B_Dutpat

=
z
COU_D_Paanmwe

Embedtes
MATLAE Fanclan

Ruady [160% | Jode3

A single eML block is only acceptable if there is little functionality at this level.
Use of eML at a lower level is acceptable.

M Readability M Verification and Validation
Rationale M Workflow M Code Generation
M Simulation

Last Change V2.1

4.4.3.6 mj_0002: Junction Box Composition

ID: Title \mj_OOOZ: Junction Box Composition

Priority ~ Mandatory

Scope ORION

103

MATLAB
Version

MA Check |No
Prerequisites

All

No math operations should occur in the Junction Boxes. The Junction boxes should
only be used to organize bus data for the corresponding CSU input. This is mainly
done with the use of Bus_Selector, Bus_Creator, and Convert blocks. Data type
conversion is allowed.

Description For example, if a model is designed to use single precision yet receives the data from

another CSU with double precision, the data should be converted in the Junction Box
— not the CSU.

Note: Math operations include Quaternion Conjugation and Matrix Transformation.

M Readability [0 Verification and Validation
Rationale M Workflow M Code Generation
0 Simulation

Last Change V1.0

4.4.3.7 im_0007: Data flow layer

ID: Title im_0007: Data flow layer
Priority Mandatory

Scope ORION
MA‘I_'LAB All
Version

MA Check |No

Prerequisites None

The data flow layer is where the algorithmic computations occur. The example shown
below uses allowable Simulink blocks but more complex algorithmic computations

Description may also be implemented in eML.

This is a continuation of the example shown for the structure layer.

104

mDumain_l:SU_A,.-"Dumain_l:SU_A,.-"l:nmpnnent_l: + i] 4

File Edit Wwiews Simulation Format Tools Help

DSE& =@ s 422 »r =fioo [Noma Sl B B2
O I »
Locall -
- Outpurt
H plw_nprt s ot
% ab_npit Sl Il%_

Sub_Companert Amap

Labd

Brmap

Ready e lode3 v
M Readability M Verification and Validation
Rationale M Workflow M Code Generation
M Simulation

Last Change V2.1

4.4.3.8 jh_0056: Sample Times

ID: Title jh_0056: Sample Times
Priority Mandatory

Scope ORION
MA‘I_'LAB All
Version

MA Check Yes
Prerequisites INone

All blocks at a CSU level should not have explicitly defined sample times. The
sample times should be set to -1 (inherited). The executive will control the sample
time of the individual CSUs.

The only exception is for the “Constant” block which has the sample time set to “inf”.

Description
This standard does not apply to the Domain level and above.
Note: Most of the blocks in the ORION Library have the sampling time locked at to
“-1” and the parameter does not appear in the block mask.
M Readability M Verification and Validation
Rationale M Workflow M Code Generation

M Simulation

105

Last Change V2.1

4.5 Stateflow
4.5.1 Chart Appearance

4.5.1.1 db_0123: Stateflow port names
ID: Title db_0123: Stateflow port names

Priority Strongly recommended
Scope MAAB

MA‘I_'LAB Al

Version

MA Check |Yes
Prerequisites None
The name of a Stateflow input/output should be the same as the corresponding signal.

Description Exception: Reusable Stateflow blocks may have different port names.
M Readability [0 Verification and Validation
Rationale M Workflow 0 Code Generation

0 Simulation
Last Change V1.0

4.5.1.2 db_0129: Stateflow transition appearance
ID: Title db_0129: Stateflow transition appearance

Priority Strongly recommended
Scope MAAB

MA‘I_'LAB Al

Version

MA Check |No

Prerequisites None

Transitions in Stateflow:
« Do not cross each other, if possible.
e Are not drawn one upon the other.
Description « Do not cross any states, junctions or text fields.
o Are allowed if transitioning to an internal state.
Transition labels can be visually associated to the corresponding transition.
Correct

106

Rationale

Ao 1 [condition] =)

[condition?]

()
[condition]
{ {
action?; action;
} !
Dy LS
S

InitState

DuterState/

InnerState/

Incorrect

M Readability 0 Verification and Validation
M Workflow [0 Code Generation
0 Simulation

Last Change (V2.0

4.5.1.3 db_0133: Use of patterns for Flowcharts

ID: Title
Priority
Scope
MATLAB

db_0133: Use of patterns for Flowcharts
Strongly recommended
MAAB

All
107

Version
MA Check |No
Prerequisites [None

A Flowchart is built with the help of Flowchart patterns (e.g. IF-THEN-ELSE, FOR
LOOP, etc.):

Description The data flow is oriented from the top to the bottom.
« Patterns are connected with empty transitions.
M Readability M Verification and Validation
Rationale M Workflow O Code Generation
I Simulation

Last Change (V1.0

4.5.1.4 db_0132: Transitions in Flowcharts
ID: Title db_0132: Transitions in Flowcharts

Priority Strongly recommended
Scope MAAB

MA‘I_'LAB Al

Version

MA Check |Yes
Prerequisites None

The following rules apply to transitions in Flowcharts:
« Conditions are drawn on the horizontal.
« Actions are drawn on the vertical.
e Loop constructs are intentional exceptions to this rule.

A transition in a Flowchart has a condition, a condition action or an empty transition.
Transition with condition:

=

Transition with condition action:

[condition]

Description

{

action;

}

Empty transition:

O =)

108

Transition actions are not used in Flowcharts. Transition actions are only valid when
used in transitions between states in a state machine, otherwise they are not activated
because of the inherent dependency on a valid state to state transition to activate them.
Transition action:

faction;
O =)
At every junction, except for the last junction of a flow diagram, exactly one
unconditional transition begins. Every decision point (junction) must have a default
path.

[condition]

action;

A transition may have a comment, and the comment must be placed above the code to
ensure proper placement in the autocode:
F comment ™/

[F comment *f
[condition]

 comment *f

{

action;

¥

M Readability M Verification and Validation
Rationale M Workflow M Code Generation
O Simulation

Last Change V2.1

4.5.1.5 mjc_0501: Format of entries in a State block
ID: Title mjc_0501: Format of entries in a State block

Priority Recommended

Scope ORION (modified MAAB jc_0501)
MA'I_'LAB All

Version

MA Check |No

Prerequisites |None
Description |A new line should be:

109

« Started after the completion of an assignment statement “;”.
Comments should be placed above the referred code to ensure proper placement in
the autocode.

Correct
i ™y
State
en.entry_value=1;
during value=0;
du:entry _value=0;
during value=1;
ex.exit_value=2;
o
Incorrect
Failed to start a new line after the completion of an assignment
statement ““;”.
o
State
en:entry_value=1;during_value=0;du:entry_value=0;
during value=1ex;exit_value=2;

M Readability O Verification and Validation
Rationale O Workflow M Code Generation
O Simulation

Last Change V2.1

4.5.1.6 jc_0511: Setting the return value from a graphical function

ID: Title jc_0511: Setting the return value from a graphical function
Priority Mandatory

Scope J-MAAB
MA‘I_'LAB All
Version

MA Check |Yes
Prerequisites None
Description | The return value from a graphical function must be set in only one place.

110

Correct
Return value A is set in one place

function A=F(B,C)

- [B==0)

Incorrect
Return value A is set in multiple places.

function A=F(B.,C)
[B==0] .~ , [C==0]
| .(!
A=1 A=2 A=
| | ‘r
[0 Readability [0 Verification and Validation
Rationale M Workflow M Code Generation

O Simulation
Last Change V2.0

4.5.1.7 jc_0531: Placement of the default transition
ID: Title jc_0531: Placement of the default transition

Priority Recommended
Scope J-MAAB
MA‘I_'LAB Al

Version

MA Check |Yes
Prerequisites None

o Default transition is connected at the top of the state.
e The destination state of the default transition is put above the other states in
the same hierarchy.
Correct e The default transition
Description is connected at the top
of the state.
e The destination state of
the default transition is
put above the other

111

Rationale

? states in the same
RIS hierarchy.
jsdbgt,oﬁ
‘:;ar:?.i
|du.
]rfynarf=c!-T,
tTIITr' off ¢ 'w} timer>on time
SubSt on
:Lneltl,
Urnar‘:dT
Incorrect e Default transition is
connected at the side of
Statel the state (State 1).
Sabsten e The destination state of
timer=) the default transition is
timers=4T: lower than the other
il | et states in the same
SubSt off hierarchy (SubSt_off).
owi
timar+=dT
M Readability O Verification and Validation
O Workflow O Code Generation
O Simulation

Last Change (V2.0

4.5.1.8 jc_0521: Use of the return value from graphical functions

ID: Title
Priority
Scope

MATLAB
Version

MA Check
Prerequisites

Description

jc_0521: Use of the return value from graphical functions

Recommended

J-MAAB

All

No
None

The return value from a graphical function should not be used directly in a comparison
operation.

Correct

An intermediate variable is used in the conditional expression after the
assignment of the return value from the function "temp_test" to the
intermediate variable "a".

112

Rationale

[&= tamp testi) 1 The data type of the variable in the
comparison operation is clear

=)

CLA
fffemp_ = temp_test()

Incorrect
Return value of the function “temp_test” is used in the conditional
expression.

[temptestl) ==1]

2@

e”rﬁé’%”: terp_testl)

M Readability [0 Verification and Validation
O Workflow [0 Code Generation
0 Simulation

Last Change V2.0

4.5.2 Stateflow data and operations

4.5.2.1 na_0001: Bitwise Stateflow operators

ID: Title
Priority
Scope

MATLAB
Version

MA Check
Prerequisites

Description

na_0001: Bitwise Stateflow operators
Strongly recommended
MAAB

All

No
None

The bitwise Stateflow operators (&, |, and *) should not be used in Stateflow charts
unless bitwise operations are desired.

If bitwise operations are desired, the “Enable C-bit Operations” needs to be
enabled.

1. From the File Menu \ Chart Properties.
2. Select Enable C-bit operations.

113

Mame: Chart

M achine: [machine] urtitled
State Machine T_l,lpe:l Classic ;l

Update method:l Inherited vl Sample Time:l

Apply to all charts in machine now

I~ Uszer specified statestransition execution order

I~ Export Chart Level Graphical Functions [(Make Global)
v Usze Strong Data Tvping with Sirmulink 120

I~ Executs [erter) Chart At Initialization

I~ Initialize Outputs Every Time Chart Wakes Up
Debugger breakpoint: [~ On chart entry I~ Lack Editar

Degcription:

Document Link: I

Correct
Use “&&” and “II” for Boolean operation.
I Mame I Data Type
1] a boalean
i b boaolean
}_ 7 [(al |b)&&c] {>< [14] e boalean
Use “&” and “I” for bit operation.
I Mame I Data Twpe
[i‘:‘i] d Lint3
[HE] e Lint3
}_ i [(dl'E)&f] {>< [141] f uintd
Incorrect
Use “&” and “I” for Boolean operation.
I Mame I Data Type
[HE] a boalean
[j,}z] b boaolean
}_ 7 [(alb)&c] &.{ [4] & boolean
O Readability O Verification and Validation
Rationale O Workflow M Code Generation
M Simulation
Last Change |V 2.0

4.5.2.2 jc_0451: Use of unary minus on unsigned integers in Stateflow

ID: Title
Priority

jc_0451: Use of unary minus on unsigned integers in Stateflow
Recommended

114

Scope MAAB

MA‘I_'LAB All
Version
MA Check |No

Prerequisites None
Do not perform unary minus on unsigned integers.

Correct
t . . I MHame I Data Tvpe I
Description i 16_varl=-si16_var2; [pjsvaz nne
Incorrect
t . . | MName | Data Type I
ui16_var1=—uil6_var2; [rquivaz untt
i |
M Readability O Verification and Validation
Rationale M Workflow M Code Generation
0 Simulation

Last Change V2.0

4.5.2.3 na_0013: Comparison operation in Stateflow

ID: Title na_0013: Comparison operation in Stateflow

Priority Recommended
Scope MAAB
MA‘I_'LAB All

Version

MA Check |No

Prerequisites |None

e Comparisons should be made only between variables of the same data type.
e |f comparisons are made between variables of different data types then the
variables need to be explicitly type cast to matching data types.

Correct Incorrect
Same data type in “1” and “n” Different data type in “i” and
oy fi<n] .
Description [i<d]
I MHame I Data Tyvpe I \}'—[}'{
[i+] i uints I Mame I Data Type I
[Hj] n uinta [H‘E] i wint3
[11] d int16
Correct
[(int16i<d]
} ={

115

I Mame I Data Tvpe
]i uintd
' ?] d int16

e Do not make comparisons between unsigned integers and negative numbers.

Incorrect

[i<-1] D{:
I Mame | Data Twpe |

I[i{»j] i uintd

[0 Readability [0 Verification and Validation
Rationale M Workflow M Code Generation
[0 Simulation

Last Change V2.0

—

4.5.2.4 db_0122: Stateflow and Simulink interface signals and parameters

ID: Title db_0122: Stateflow and Simulink interface signals and parameters

Priority Strongly recommended
Scope MAAB

MA'I_'LAB All

Version

MA Check |Yes
Prerequisites None

A Chart uses strong data typing with Simulink (The option "Use Strong Data Typing
with Simulink 1/0" must be selected).

#4 |Stateflow [chart) sf_patterns/._. =] + Chart db_0122_sl_sf_interface =]
JACW Edit Simulation Yiew Tools Add Name: db 0122 o sf interface
New Madel.. Ctil+N -
Open Model.. Chl+0 é{; » a Simulink Subsystem: sf_patternz/db 0122_s| sf interface
Save Model Ciik+s Parent: [maching] sf_patterns
Save Model As... -
Update method: ITliggered ar Inherited vI Sample Time: I -1
LCloze Chrl+ia
. . Close All Charts [~ Mo Code Generation for Custom Targets
Descrl ptlon Saurce Contral » [~ Export Chart Level Graphical Functions
¥ Usze Strong Data Typing with Simulink 1/0
Machine Froperties... [[~ Execute [enter] Chart At Initialization
Erint... Chrl+F Debugger breakpoint: [~ Onchatenty Editor: [~ Locked
Frint Current 'iew 3 0 R
Frinter Setup... i
Piint Baok... Cii+B I
Exit MATLAE Ctil =
g el T Document Link: |
I | -+
D# 1472 Ok | Cancel | Help | apply
|Heady
. M Readability M Verification and Validation
Rationale :
M Workflow O Code Generation

116

[0 Simulation
Last Change V2.0

4.5.2.5 db_0125: Scope of internal signals and local auxiliary variables

ID: Title db_0125: Scope of internal signals and local auxiliary variables

Priority Strongly recommended
Scope MAAB

MATLAB Al

Version

MA Check |Yes
Prerequisites None

Internal signals and local auxiliary variables are "Local data" in Stateflow:
o All local data of a Stateflow block must be defined on the chart level or below
the Object Hierarchy.
e There must be no local variables on the machine level (i.e. there is no
interaction between local data in different charts).
» Parameters and constants are allowed at the machine level.
Correct

¥ Exploiing._. madel/chart_state
fie Edt Tods Add Hep

Obzci Hieranchy Condents of {staie) modelichart stale
.. b2 model Hame Scope Trigger Type Size Min Max ifval FOAS ToWlWS Watch
Descrlptlon —- @ chat [:] dda Local double 0

Al siale

Y

everis() datal) fargetsil 1 [1:1]

¥ Exploning... model _ O] x|
fie Edt Took Add Hep

Objeci Hierarchy Coedents of {(machine) modal
ellroce| Mame Scope Trgger Type Size HMin Max Witval FrlS ToWSs Waich
- @ chat [:] dada Local doule 0
=] state I sfun
| K I I
Incorrect everisill data(f) argets() 2 [1:3)
M Readability M Verification and Validation
Rationale M Workflow [0 Code Generation

O Simulation
Last Change V2.0

4.5.2.6 jc_0481: Use of hard equality comparisons for floating point numbers in
Stateflow

jc_0481: Use of hard equality comparisons for floating point numbers in

ID: Title Stateflow

117

Priority Recommended

Scope MAAB
MA‘I_'LAB All
Version

MA Check |No

Prerequisites None

e Do not use hard equality comparisons (Varl == Var2) with two floating point
numbers.

e If a hard comparison is required a margin of error should be defined and used in
the comparison (LIMIT in the example).

e Hard equality comparisons can be done between two integer data types.

Correct
I MName I Data Twpe I
[HE] d1 doub le
[14+1] 02 double
Description
Ioiff=idl - d2 x|
I [[E-LIMIT <= diff BA Caiff <= LIMIT S]]
) =y
.
Incorrect
p |t =4
G
[0 Readability M Verification and Validation
Rationale M Workflow M Code Generation
O Simulation

Last Change V2.0

4.5.2.7 jc_0491: Reuse of variables within a single Stateflow scope

ID: Title jc_0491: Reuse of variables within a single Stateflow scope
Priority Recommended

Scope MAAB
MA‘I_'LAB All
Version

MA Check |No

Prerequisites None
Description |The same variable should not have multiple meanings (usages) within a single
118

Rationale

Stateflow scope.

Correct
Variable of loop counter must not be
used other than loop counter.

Incorrect
The meaning of the variable
changes from the index of the loop
counter to the sum of a+b

?

7
{
1=
]

[13%2]
1

1;

Correct
tempVar is defined as local scope in
both SubState_A and SubState B

ﬁl: opState/ \

]

SubState A/

en:

tempVar = engSpd;

engSpd = FiltFunc(tempVar);

JiTRAI\JS_Cﬁ.LC TENG_CALC

SubState_B/

en:

tempVar = tranSpd;

tranSpd = FiltFunc(tempVar);

Contents of: jo_0491 AChartf] opState/SubState A

I Mame I Scope I F'u:urll Data Type Mode I Data Ty
[147] tempiar Lacal Eilt-itn int3z

Contents of: jo_0431/ChartT opState/SubState B

| Mame | Scopel Fort I Data Type Model Datal

[i41] temp¥ar Local Built-ir int32
M Readability O Verification and Validation
™M Workflow M Code Generation

O Simulation
119

Last Change V2.0

4.5.2.8 jc_0541: Use of tunable parameters in Stateflow
ID: Title jc_0541: Use of tunable parameters in Stateflow

Priority Strongly recommended
Scope MAAB

MA'I_'LAB Al

Version

MA Check |Yes
Prerequisites None
Tunable parameters should be included in a Chart as inputs from the Simulink model.

Correct
param] param1% IName Scope
Constant [1+1] paraml Tnput
Chart
I Incorrect

Description

I MHame IS:::::pe I
4] paraml Constant
R or
I MHame ISche I
Chart 4] paraml Parameter
M Readability O Verification and Validation
Rationale M Workflow M Code Generation

0 Simulation
Last Change V2.0

4.5.2.9 db_0127: MATLAB commands in Stateflow
ID: Title db_0127: MATLAB commands in Stateflow

Priority Mandatory
Scope MAAB
MA‘I_'LAB All
Version

MA Check |No

120

Prerequisites None

The following rules apply to logic in Stateflow:
e« MATLAB functions are not used.
« MATLAB instructions are not used.
« MATLAB operators are not used.
o Project-specific MATLAB functions are not used.

Incorrect
Description l
W
XY Trac
du:
xForce = WheelTqTot heelAng):;
yForce = WheelTqTot 3 heelAng):
M Readability M Verification and Validation
Rationale M Workflow M Code Generation

O Simulation
Last Change (V2.0

4.5.2.10 jm_0011: Pointers in Stateflow
ID: Title jm_0011: Pointers in Stateflow

Priority Strongly recommended
Scope MAAB

MATLAB Al

Version

MA Check |No

Prerequisites None
Description |In a Stateflow diagram, pointers to custom code variables are not allowed.

M Readability e Verification and Validation
Rationale M Workflow M Code Generation
O Simulation

Last Change V1.0

4.5.3 Events

4.5.3.1 db_0126: Scope of events

ID: Title db_0126: Scope of events
Priority Mandatory
121

Scope MAAB

MATLAB
Version

MA Check |Yes
Prerequisites None

The following rules apply to events in Stateflow:
All events of a Chart must be defined on the chart level or lower.

All

Description There is no event on the machine level (i.e. there is no interaction with local
events between different charts).
M Readability M Verification and Validation
Rationale M Workflow O Code Generation

O Simulation
Last Change (V2.0

4.5.3.2 jm_0012: Event broadcasts
ID: Title jm_0012: Event broadcasts

Priority Strongly recommended
Scope MAAB

MA'I_'LAB Al

Version

MA Check |No

Prerequisites |db_0126: Scope of events

The following rules apply to event broadcasts in Stateflow:
« Directed event broadcasts are the only type of event broadcasts allowed.
e The send syntax or qualified event names are used to direct the event to a
particular state.
o Multiple send statements should be used to direct an event to more than one
state.
Example using the send syntax:

Isend(E1B)

Description

Example using qualified event names:

122

M Readability M Verification and Validation
Rationale M Workflow M Code Generation
O Simulation

Last Change V1.0

45.4 Statechart Patterns

4.5.4.1 db_0150: State machine patterns for conditions
ID: Title db_0150: State machine patterns for conditions

Priority Strongly recommended
Scope MAAB

MA'I_'LAB All

Version

MA Check No
Prerequisites |None
The following patterns are used for conditions within Stateflow state machines:

Equivalent Functionality State Machine Pattern
ONE CONDITION: D fconditior]
(condition)

UP TO THREE

Description |\ ~oNDITIONS, SHORT

FORM: A [condition? && condition2] i
(The use of different logical

operators in this form is not - -
allowed, use sub conditions A [condition? || condition?]
instead)

(condition1 && condition2)

123

Rationale

Last Change

(conditionl || condition2)

TWO OR MORE
CONDITIONS, MULTILINE
FORM:

A sub condition is a set of
logical operations, all of the
same type, enclosed in
parentheses.

(The use of different operators
in this form is not allowed, use
sub conditions instead)

(conditionl ...
&& condition2 ...
&& condition3)

(conditionl ...
|| condition2 ...
|| condition3)

[condition? ..
&& condition? ...

[

&& condition3]

[condition? ..
| condition? .

il

|| condition3]

M Readability M Verification and Validation
M Workflow [0 Code Generation

O Simulation
V2.0

4.5.4.2 db_0151: State machine patterns for transition actions

ID: Title
Priority
Scope

MATLAB
Version

MA Check
Prerequisites

Description

db_0151: State machine patterns for transition actions

Strongly recommended
MAAB

All

No
None

The following patterns are used for transition actions within Stateflow state

machines:
Equivalent Functionality

124

State Machine Pattern

ONE TRANSITION

ACTION: A jaction;

action;

TWO OR MORE

TRANSITION ACTIONS,

MULTILINE FORM: _ .

(Two or more transition Iacfmon'].,
action?;

actions in one line are not : ion3.

actionl;
action2;
action3;

M Readability M Verification and Validation
Rationale M Workflow [0 Code Generation
0 Simulation

Last Change V1.0

45.5 Flowchart Patterns

The following rules illustrate sample patterns used in flow charts. As such they would normally be
part of a much larger Stateflow diagram.

4.5.5.1 db_0148: Flowchart patterns for conditions
ID: Title db_0148: Flowchart patterns for conditions

Priority Strongly recommended
Scope MAAB

MA'I_'LAB All

Version

MA Check |No

Prerequisites None
The following patterns are used for conditions within Stateflow Flowcharts:
Equivalent Functionality Flowchart Pattern

[condition]

Description | ONE CONDITION:

N Fcomment ®f
[condition] [condition]

O

125

UP TO THREE
CONDITIONS, SHORT
FORM: (The use of
different logical operators in
this form is not allowed, use
sub conditions instead.)

[condition1 && condition2 &&
condition3]

[conditionl || condition2 ||
condition3]

TWO OR MORE
CONDITIONS,
MULTILINE FORM:

(The use of different logical
operators in this form is not
allowed, use sub conditions
instead.)

[conditionl ...

&& condition2 ...

&& condition3]

[conditionl ...

|| condition2 ...

|| condition3]
CONDITIONS WITH
SUBCONDITIONS:
(The use of different logical
operators to connect sub
conditions is not allowed.
The use of brackets is
Mandatory.)

[(conditionla || conditionlb) ...
&& (condition2a || condition2b)

&& (condition3)]
[(conditionla && conditionlb)

|| (condition2a && condition2b)

Il (condition3)]

[condition1 &é& condition2 && condition3]

O

[condition? || condition2 || condition3]

2@

O

[condition? ..
#& conditionZ

&8 condition3]

O

[condition? ..
|| condition2 ..
|| condition3]

=)

[(conditionta || conditionTh) ..
&& (conditionZa || condition2b) ...

& condition3]

=

[[condition1a && condition1b)
| {conditionZa && condition2b)

| condition3]

126

=)

a®

[condition1] [conditionZ]

CONDITIONS, WHICH
ARE VISUALLY
SEPARATED:
(This form can be mixed up
with the patterns listed
above.) [condition1]
[condition1 && condition2]
[condition1 || condition2] [conditionZ]

1. Readability M Verification and Validation

Rationale M Workflow [0 Code Generation
0 Simulation

Last Change V2.0

4.5.5.2 db_0149: Flowchart patterns for condition actions
ID: Title db_0149: Flowchart patterns for condition actions

Priority Strongly recommended
Scope MAAB

MA'I_'LAB All

Version

MA Check |No

Prerequisites None
The following patterns are used for condition actions within Stateflow Flowcharts:

Equivalent Functionality Flowchart Pattern
. { * comment */
Description - {
ONE CONDITION ACTION: action; action
action; 1 , :

127

Rationale

TWO OR MORE CONDITION

ACTIONS, MULTILINE FORM: 1
(Two or more condition actions in action,
one line are not allowed.) actionz;
actionl; ... action3;
action2; ... I
action3; ...
{
actiona,
CONDITION ACTIONS, WHICH fcnomu
ARE VISUALLY SEPARATED:
(This form can be mixed up with C%
the patterns listed above.) {a ctiors:
actionla; 1 '
actionlb;
action2; %
actions; éctionS;
% t
M Readability M Verification and Validation
M Workflow [0 Code Generation
0 Simulation

Last Change V1.0

4.5.5.3 db_0134: Flowchart patterns for If constructs

ID: Title
Priority
Scope

MATLAB
Version

MA Check

Prerequisites

Description

db_0134: Flowchart patterns for If constructs
Strongly recommended
MAAB

All

No

db 0148: Flowchart patterns for conditions
db 0149: Flowchart patterns for condition actions

The following patterns are used for If constructs within Stateflow Flowcharts:

Equivalent

. . Flowchart Pattern
Functionality

128

IF THEN
if (condition){
action;

}

IF THEN ELSE
if (condition) {
actionl;
}
else {
action2;

}

IF THEN ELSE IF

if (conditionl) {
actionl;

}

else if (condition2) {
action2;

else if (condition3) {
action3;

}

else {
action4;

¥

[condition]

{

action:

¥

[condition]

actionz;

}

action?;

[conditiond] ::{__}

[conditionz]

{
[zondition3] icti-:-ni; action1;
! ! } '

actiond;
H

actiond;

: S

129

Cascade of IF THEN
if (conditionl) {
actionl;
if (condition2) {
action2;
if (condition3) {
action3;
}
}
}

M Readability
M Workflow
O Simulation

Last Change V1.0

Rationale

]

|

L. |
Y [condtionl]
([—a{)
T
acthonl,
!

&
X [condition2]

() =)

acton?,

M Verification and Validation
O Code Generation

4.5.5.4 db_0159: Flowchart patterns for case constructs

ID: Title db_0159: Flowchart patterns for case constructs
Priority Strongly recommended

Scope MAAB

Version Al

MA Check |No

db 0148: Flowchart patterns for conditions

Prerequisites

xr [conditond)
(J—)

1
action3,
1

'.1,' 3

db 0149: Flowchart patterns for condition actions

The following patterns must be used for case constructs within Stateflow Flowcharts:
Equivalent Functionality Flowchart Pattern

Description

130

Rationale

CASE with exclusive selection

selection = ...;
switch (selection) {
case 1.
actionl;
break;
case 2.
action2;
break;
case 3:
action3;
break;
default:
action4;

CASE with exclusive

conditions

¢l = conditionl;

c2 = condition2;

¢3 = condition3;

if (cl && !1c2 && 'c3) {
actionl;

}

elseif (Icl && c2 && 'c3) {
action2;

}

elseif (Icl && 1c2 && ¢3) {
action3;

}

else {
action4;

}

M Readability
M Workflow
O Simulation

Last Change V1.0

O

selection= .

[selection == 1]

{

action”;

¥

[selection == 2]

action2;

I
[selection == 3]

{

action3;

¥

{

actiond;

i];
Q i
c1 = condition?;
c2 = conditionZ;

c3 = condition3;

}
él [c1 && 1c2 && 1c3)

{

action,

}

[lol && c2 && Ic3]
{

action2,

}

[lol && 1c2 && c3]
{

action3;

}

{

actiond,

}

M Verification and Validation
O Code Generation

4.5.5.5 db_0135: Flowchart patterns for loop constructs

ID: Title

db_0135: Flowchart patterns for loop constructs

131

Priority Recommended

Scope MAAB
MA‘I_'LAB Al
Version

MA Check No

db 0148: Flowchart patterns for conditions
db 0149: Flowchart patterns for condition actions

The following patterns must be used to create Loops within Stateflow Flowcharts:

Prerequisites

Equivalent Functionality Flowchart Pattern
{ [rees = ampar_x_koos] .4
FOR LOOP gy
for
(index=0;index<number_of_loops;index++) | % .~ Lo
{ - o -
action;
} 1 é'rl.l-:n H
Description "
O
[condition]
WHILE LOOP (
while (condition) { action:
action; ¥
}

132

DO WHILE LOOP

do { {
action; ?ction;

while (condition);

[condition]

M Readability M Verification and Validation
Rationale M Workflow O Code Generation
O Simulation

Last Change V1.0

4.6 Embedded MATLAB (eML)

4.6.1 jh_0201: eML Function Types
ID: Title jh_0201: eML Function Types

Priority Mandatory
Scope ORION
MA‘I_'LAB All
Version

MA Check |No

jh_0073: eML Header

jh_0079: Model and Matlab Filenames

jh_0202: Testable Units

jh_0200: Guidelines for Managing Model Complexity

eML Functions can exist in one of two forms:

Prerequisites

1. Asan eML function that is written directly into an eML block
e The eML code only exists within the model that contains it and is not
separately stored or separately editable.
e The only interface to the eML function is the eML block in which it
resides
o A full header is still required

133

Description

2. As an externally saved “dot-m” file
e Externally saved “dot-m” files are considered “Testable Units”
e These functions may be called from multiple interfaces from within a
single Model (see limitations below)
e These functions are fully defined in a separate file
e A full header is required
e The declaration on the line immediately succeeding the function
declaration must have the following code
o emlinline(“never”);
o This declaration will ensure that the function is autocoded as an
independent function and is fully testable. This will also maintain
a One-to-One Testable Unit-to-autocode function (see jh_0202:
Testable Units)

Major Limitations related to the use of eML.:

The current version of the Simulink tool has 2 major limitations that need to be taken
into account when developing eML functions.

1. Interface Limitation: Eml code can’t call Simulink models or Stateflow
Charts. The following diagrams below shows the calling abilities of each of
the 3 tools (Simulink, Stateflow, eML).

Simulink Simulink

Stateflow Stateflow

Once an eML function is used, all function calls below that model must also be eML.

ﬂ:m aﬂm S8Sem

Simulink models can call Stateflow Charts can call eML can only call other
all tools all tools eML functions

2. Duplication in Autocode: eML Functions are only reused in the autocode

134

when they are called multiple times from within the same model. eML
functions that are shared between models will result in multiple instances of
the function in the autocode. The only way to ensure that eML code is not
coded multiple times when used by multiple models is to wrap it in a
Simulink model and call it using the Model Reference feature.

The Diagram below illustrates the current limitation with eML and Real-Time
Workshop. The shared eML function, “EMLfunction”, will be present in the

autocode for both “Model A” and “Model B”.

g EMLfunction kY
2 2
0 -]
5 5
(o) w
Model_A.cpp Model B.cpp
Model_A() Model_B()

Model_A_EMLfunction()

Model_B_EMLfunction()

To work around this limitation, eML functions can be “wrapped” in a Simulink
model that only contains an eML block. The diagram below illustrates this approach
that is consistent with the ORION project direction:

135

b

EMLfunction
Model

QU U
© o
o 0
(=] o
o o
s 5
w L]
- --Q)
©
S
o
s
©
ModeI_A.cpp‘ : EMLfunction_ MR.cpp Model_B.cpp
| Model_A() | | | |EMLiunction_mR() | Model_B()

This approach will create a single autocoded function for the “EMLfunction” that is
only called by the code for “Model A” and “Model B”.

M Readability M Verification and Validation
Rationale M Workflow M Code Generation
M Simulation

Last Change V1.0

4.6.2 im_0008: Source lines of eML

ID: Title |im_0008: Source lines of eML

Priority |Mandatory
Scope ORION
MA'I_'LAB All
Version

MA Check |Yes

Prerequisites |jh_0201: eML Function Types

Each eML function must have less than 60 source lines of code. This restriction
applies to eML functions that reside at the Simulink block diagram as well as
externally defined eML functions (a.k.a. “dot-m” files). The 60 source lines of code
limitation is not additive and applies to each function individually.

Description

136

Rationale

Last Change

M Readability M Verification and Validation
M Workflow M Code Generation
[0 Simulation

V11

4.6.3 im_0009: Number of called function levels

ID: Title
Priority
Scope

MATLAB
Version

MA Check
Prerequisites

Description

Rationale

Last Change

im_0009: Number of called function levels
Mandatory
ORION

All

No
None

There shall be no more than 3 levels of function calls allowed from the eML function
block that resides at the Simulink block diagram level. The eML function block that
resides at the Simulink block diagram level counts as the first level — unless it is
simply a wrapper for an externally defined eML function (a.k.a. “dot-m” file).

This includes functions that are defined within the eML block and those in separate
.m files

For example:

if the eML function block with function foobarl calls foobar2, a subfunction or other
user defined function residing in an external file, that subfunction or function,
foobar2, may similarly call another subfunction or function, such as foobar3. This
would constitute 3 levels of function calls (the first level eML function block
function, foobarl, it’s called subfunction or function, foobar2, at the second level,
and the third level subfunction or function call, foobar3). No further calls to
subfunctions or functions would be allowed from foobar3, as this is the third and last
allowed level.

Note: A call to a USA utility function does not count as a level.

M Readability M Verification and Validation
M Workflow M Code Generation
1 Simulation

V1.3

4.6.4 jr_0002: Number of nested if/for statement blocks

ID: Title
Priority

Jjr_0002: Number of nested if/for statement blocks
Strongly Recommended
137

Scope

MATLAB
Version

MA Check
Prerequisites

Description

Rationale

Last Change

ORION
All

No
None

There shall be no more than 3 levels of nested if/for statement blocks allowed within
an eML function block that resides at the Simulink block diagram level, or a lower
level.

M Readability M Verification and Validation
M Workflow M Code Generation
O Simulation

V1.2

4.6.5 jh_0110: eML Function Reuse

ID: Title
Priority
Scope

MATLAB
Version

MA Check
Prerequisites

Description

jh_0110: eML Function Reuse
Mandatory
ORION

All

No
None

eML functions can only be called multiple times within the same Model (CSU or
Model Reference). The same eML function can be called by separate eML blocks,
but only if they reside in the same model. Shared eML functions should not be called
directly. If a shared function is written in eML and needs to be used in multiple
CSUs, the eML function should be wrapped in a Simulink model and called through
model reference.

The reason for this standard is as follows. The autocoder, Real-Time Workshop,
does not have knowledge of shared eML functions. Due to this limitation, the
autocoder will create a version of the eML function each time that it is used across
models or eML blocks. Each autocode version may be coded in a different way
depending on how it was called and the method that the RTW autocoder used to
optimize the function and fold it into the surrounding operations. The existence of
multiple versions of the same function makes the V&YV process significantly more
difficult because each of the instances of the reused eML function will need to be
verified and validated. Therefore, this method is not compatible with the ORION
GN&C Architecture.

Wrapping the eML function in a Simulink wrapper ensures only one instance of the
autocode for that function and creates a generic function interface that is identical for
all users of the function. This Simulink function can be called from either Simulink

138

Rationale

Last Change

or Stateflow.

] Readability M Verification and Validation
L1 Workflow M Code Generation
[0 Simulation

V1.1

4.6.6 im_0010: Number of inline function calls

ID: Title
Priority
Scope

MATLAB
Version

MA Check
Prerequisites
Description

Rationale

Last Change

im_0010: Number of inline function calls

Mandatory

ORION

All

Yes

None

There shall be no more than 12 inline function calls allowed within each eML block.
M Readability M Verification and Validation
M Workflow M Code Generation
[0 Simulation

V1.0

4.6.7 jh_0063: eML block input/output settings

ID: Title
Priority
Scope

MATLAB
Version

MA Check
Prerequisites

Description

Rationale

jh_0063: eML block input/output settings
Recommended
ORION

All

Yes
None

All inputs and outputs to eML blocks should have the DataType and Size explicitly
defined via the Model Explorer (e.g. they can’t be set to “DataType:Inherit: Same as
Simulink” and “Size:-1”"). This provides a more rigorous data type check for eML
blocks and prevents the need for using assert statements.

Note: For vector inputs, enter the size in one of the following formats:
e Column vector: [3, 1]
e Row vector: [1, 3]

0 Readability M Verification and Validation
O Workflow M Code Generation

139

Last Change

M Simulation
V1.0

4.6.8 jh_0021: Restricted Variable Names

ID: Title
Priority
Scope

MATLAB
Version

MA Check
Prerequisites

Description

Rationale

Last Change

jh_0021: Restricted Variable Names
Mandatory
ORION

All

Yes
None

Avoid using reserved C variable names such as const, TRUE, FALSE, infinity, nill,
double, single, enum, for eML code. These names may conflict with the compiler
after the model is autocoded.

Avoid, using variable names that conflict with eML library functions such as "conv".
A list of all eML library function names can be found in the eML users guide.

7311
1

The variable names “i”” and “j” should not be used for looping. These names may
conflict with those used by Real-time Workshop.

Note: This standard only applies to variable names used within eML

O Readability O Verification and Validation
O Workflow M Code Generation
[0 Simulation

V1.2

4.6.9 jh_0064: eML if statement

ID: Title
Priority
Scope

MATLAB
Version

MA Check
Prerequisites

Description

jh_0064: eML if statement
Mandatory
ORION

All

No
None

Variables used in if statements must be of the same data type. This will prevent
Matlab from automatically downcasting the data type for the variables so that they
will be comparable. If this rule is not followed, the model may produce unexpected
results.

140

No type casting is needed for hard coded constants used in an if statement. The
constants will be promoted to the same type as the variable.

[0 Readability M Verification and Validation
Rationale O Workflow M Code Generation
M Simulation

Last Change V1.1

4.6.10 jh_0023: Arrays
ID: Title jh_0023: Arrays

Priority Mandatory
Scope ORION
MA‘I_'LAB All
Version

MA Check |No

Prerequisites [None
This standard is enforced automatically by the m-lint tool.

eML does not support dynamic memory allocation. This presents an issue when
using arrays. This was one of the most common errors found in the conversion
process from Matlab to eML. The size of arrays must be declared before values can
be assigned to the array. For example:

o The following code will generate an error:

r_ ECI(1) = 20187984;
r_ECI(2) = 421063;
r_ECI(3) = -7806383;
o The array size must be determined before any values are assigned as

follows:
Description

r_ ECI1 =[00 0]; %this declares the array as a 1x3 array
r_ ECI(1) = 20187984;
r_ECI(2) = 421063;
r_ECI(3) = -7806383;
o The following code will also work since the array size is being declared as
it is being assigned a value:

r_ ECI =[20187984 421063 -7806383];
o Now that the array is initialized the values can change but the size of the
array may not change. For example, the following code will generate an
error:

r_ECI = [20187984 421063 -7806383];
141

Rationale

Last Change

4.6.11
ID: Title
Priority
Scope

MATLAB
Version

MA Check
Prerequisites

Description

Rationale

Last Change

r ECI =[20187984 421063 -7806383 10000]; %the size of the array has already
been set and can’t change
o This rule also applies to structures. Once a structure has been read or
passed to a function, fields can no longer be added to it. For example, the
following code will generate and error:

Constant.A = 20187984,

Constant.B = 421063;

myVar = Constant.A; %the structure is used here
Constant.C = -7806383,; %another field can’t be added

Also, cell arrays and mx arrays are not allowed by eML.

[0 Readability 0 Verification and Validation
O Workflow 0 Code Generation
M Simulation

V1.0

jh_0024: Strings
jh_0024: Strings
Strongly recommended
ORION

All

No
None

The use of strings is not recommended. eML stores strings as character arrays and
these arrays can't be resized to accommodate a string value of different length due to
lack of dynamic memory allocation. Also, stings are not a supported data type in
Simulink so eML blocks could not pass the string data outside the block.

For example the following code will produce an error:
name = ‘rate_error’; %this will create a I x 10 character array

name = x_rate_error’; %this will cause an error because the array size is now I x
12 instead of 1 x 10

M Readability O Verification and Validation
O Workflow M Code Generation
M Simulation

V1.0

142

4.6.12
ID: Title
Priority
Scope

MATLAB
Version

MA Check
Prerequisites

Description

Rationale

Last Change

4.6.13

ID: Title
Priority
Scope

MATLAB
Version

MA Check
Prerequisites

Description

jh_0025: Structures

jh_0025: Structures
Mandatory
ORION

All

No
None
This standard is enforced automatically by the m-lint tool.

Once a structure has been read or passed to a function, fields can no longer be added
to it. For example, the following code will generate and error:

Constant.A = 20187984;

Constant.B = 421063;

myVar = Constant.A; %the structure is used here

Constant.C = -7806383, %another field can’t be added

Field values may be changed, just not added after being accessed. For example, the
following code is acceptable:

Constant.A = 20187984;

Constant.B = 421063;

myVar = Constant.A; %the structure is used here

Constant.A =51146 ; %an existing field value can be manipulated

[0 Readability O Verification and Validation
0 Workflow 0 Code Generation
M Simulation

V1.0

jh_0026: Switch/case statements

jh_0026: Switch/case statements
Mandatory
ORION

All

No
None
This standard is enforced automatically by the m-lint tool.

When using “switch” and “case” statements you may not use a variable or structure
in the “case” expression; this value must be constant. The following code will

143

generate an error:
switch(iopt)
case enum.LVLH % Local Vertical, Local Horizontal
uy = -uh;
uz = -ur;
ux = cross(uy, uz);
case enum.WIND_REL % Aerodynamic angles
Ux = uv;
uy = -uh;
uz = cross(ux, uy);
otherwise % Default to Aerodynamics angles

ux = uv;
uy = -uh;
uz = cross(ux, uy);
end

e The conditions of each case must not reference a structure value. The
following code fixes this error:

switch(iopt)
case 1 %enum.LVLH =1
uy = -uh;
uz = -ur;
ux = cross(uy, uz);
case 2 %enum.WIND_REL =2

ux = uv;
uy = -uh;
uz = cross(ux, uy);
otherwise
ux = uv;
uy = -uh;
uz = cross(ux, uy);
end
0O Readability O Verification and Validation
Rationale 0 Workflow [0 Code Generation
[0 Simulation

Last Change V1.0

4.6.14 jh_0027: Multiple Code Paths
ID: Title Jjh_0027: Multiple Code Paths

Priority Mandatory
Scope ORION
MA‘I_'LAB All
Version

MA Check |No

144

Prerequisites None
This standard is enforced automatically by the m-lint tool.

If a variable affects the output of a function it must be assigned in all possible paths
of the code. For example, the following code contains multiple paths based on the
value of “iopt”.
function [ux, uy, uz] = comp(ipot, uh, ur)

switch(iopt)

case 1

uy = -uh;

uz = -ur;

ux = cross(uy, uz);
case 2

ux = uv;

uy = -uh;

uz = cross(ux, uy);

end

If the variable “iopt” does not equal either 1 or 2, then the variables ux, uy, and uz
will never be assigned a value. Consider always using “otherwise” with a “switch”
statement and also using an “else” with an if/then statement. In the code below, all
paths of the function will assign a value to each of the output variables.
function [ux, uy, uz] = comp(iopt, uh, ur)

switch(iopt)

Description

case 1

uy = -uh;

uz = -ur;

ux = cross(uy, uz);
case 2

ux = uv;

uy = -uh;

uz = cross(ux, uy);
otherwise

Ux = -uv;

uy = uh;

uz = cross(ux, uz);

end

This rule also applies to the “return” function so that necessary code is not skipped.
It is recommended that the “return” statement not be used.

[J Readability [Verification and Validation
Rationale 0 Workflow [0 Code Generation
M Simulation

Last Change V1.0

145

4.6.15 jh_0029: m-files
ID: Title jh_0029: m-files

Priority Mandatory
Scope ORION
MA‘I_'LAB All
Version

MA Check |No

Prerequisites |None
This standard is enforced automatically by the m-lint tool.

Description |All eML files that are stored as separate m-files must be in a common directory. All
eML files must have the %#eml declaration after the function declaration at the
beginning of the code.

M Readability O Verification and Validation
Rationale M Workflow M Code Generation
M Simulation

Last Change V1.2

4.6.16 jh_0030: Extrinsic function
ID: Title jh_0030: Extrinsic function

Priority Mandatory
Scope ORION
MA'I_'LAB All
Version

MA Check |No

Prerequisites None
This standard is enforced automatically by the m-lint tool.

Description
Use of extrinsic functions is not allowed.
O Readability O Verification and Validation
Rationale O Workflow M Code Generation
M Simulation

Last Change V1.1

4.6.17 ek _0002: Recursive functions
ID: Title ek _0002: Recursive functions
Priority Mandatory

Scope ORION

146

MATLAB
Version

MA Check
Prerequisites

Description

Rationale

Last Change

4.6.18
ID: Title
Priority
Scope

MATLAB
Version

MA Check
Prerequisites

Description

Rationale

All

No
None
The use of recursive function calls shall be avoided.

The SPD restricts the use of recursion:

OCS Rule 109 (AV Rule 119)

Functions shall not call themselves, either directly or indirectly (i.e. recursion shall
not be

allowed).

Rationale: Since stack space is not unlimited, stack overflows are possible.
Exception: Recursion will be permitted if it can be proven that adequate resources
exist to support the maximum level of recursion possible.

M Readability O Verification and Validation
0 Workflow M Code Generation
M Simulation

V1.1

ek _0003: Global Variables

ek _0003: Global Variables
Strongly recommended
ORION

All

No
None
This standard is enforced automatically by the m-lint tool.

The use of global variables is not allowed. Variables created in an eML function are
only accessible to that function. This rule also applies to subfunctions within eML
blocks. For example, a subfunction within an eML block cannot see the variables
used by the main eML function unless these variables are passed to the function with
the function call.

Use persistent variables or unit delay blocks for maintaining values between function
calls. See standard ek _0010.

M Readability [Verification and Validation
0 Workflow M Code Generation
M Simulation

147

Last Change

4.6.19
ID: Title
Priority
Scope

MATLAB
Version

MA Check
Prerequisites

Description

Rationale

V1.0

jh_0073: eML Header

jh_0073: eML Header
Mandatory
ORION

All

Yes
None

eML functions should have a header that contains the following information before
the function declaration:

Function name

Description of function

Assumptions and Limitations

Developer Name, email, and phone number

Description of changes from previous versions is applicable
Lists of inputs and outputs

Example:

%***

00 o0 O o A A A A A A® O ° O A° O A° o° A o° o°

oe

FUNCTION NAME:
util vec unitize

DESCRIPTION:
Normalizes/unitizes a vector of size 3

INPUT:
double b - input 3 wvector

OUTPUT:
double y - normalized/unitized 3 vector

ASSUMPTIONS AND LIMITATIONS:
None

MODIFICATION HISTORY (INCLUDING INITIAL IMPLEMENTATION) :
01/02/03 - Louis Breger (CSDL), email, phone #
* Initial implementation

02/06/03 - Chinwe Nyenke (CSDL), email, phone #
* Added protection for divide by zero

0 Readability M Verification and Validation
M Workflow O Code Generation
[0 Simulation

148

Last Change

4.6.20
ID: Title
Priority
Scope

MATLAB
Version

MA Check
Prerequisites

Description

Rationale

Last Change

4.6.21
ID: Title
Priority
Scope

MATLAB
Version

MA Check
Prerequisites
Description

Rationale

Last Change

4.6.22
ID: Title
Priority
Scope

V11

jh_0093: Parameter Bus for eML
jh_0093: Parameter Bus for eML

Recommended
ORION

All

No
None

For embedded Matlab blocks, the entire parameter bus should be input if used and
the separate elements of the bus accessed within the code instead of passing each
element used as a function argument.

[0 Readability O Verification and Validation
OO0 Workflow M Code Generation
[0 Simulation

V1.0

jh_0084: eML Comments
jh_0084: eML Comments

Mandatory
ORION

All

No
None
All eML functions should be properly commented to describe functionality.

O Readability M Verification and Validation
O Workflow M Code Generation
[0 Simulation

V10

do_0001: Declaring Local Variables in eML
do_0001: Declaring Local Variables in eML
Mandatory
ORION

149

MATLAB
Version

MA Check |No
Prerequisites INone

All

A local eML variable shall be explicitly type cast when it is intend to have a data
type other than an inherited type or double. The properties (class, size and
complexity) of a variable are inherited from the right side of an assignment when the
variable is first assigned. First assignments to a constant results in a data type of
“double”

For example:
State = prevState; % State is set to the type of “prevState”
Num_Of_Samples = 0; % Num_Of_Samples is of type double
Buff_Size = uint32(6) % Buff_Size is of type uint32
Description
Local eML variables used as counters should be typed as an int or uint. This will
prevent the code from having logic comparisons to reals.

Local eML variables used as an array index should be typed to an int. This will
prevent the code from having extra (int32_t) type casts.

Exceptions:

The index variable of a for-loop does not require a type cast if the index variable is
first assigned in the for-loop expression. The index variable will default to a type
int32.

O Readability O Verification and Validation
Rationale O Workflow M Code Generation
O Simulation

Last Change V1.0

4.7 Code Development Standards

4.7.1 hyl_0204: Standard units
ID: Title hyl_0204: Standard units

Priority Mandatory
Scope ORION
MA‘I_'LAB All
Version

MA Check |No

Prerequisites None

The models shall output signals in English units unless otherwise required by external
Description interfaces.
e Force, mass, and length units shall be LBF, SLUG, and FT (respectively) unless

150

otherwise required by an external interface

The units abbreviation shall follow the convention outlined in the table blelow.

Abbreviation ‘ Description

A Amps

Bit Bits

Byte Bytes

BTU British Thermal Units
C Degrees Celsius
Character Characters

CT Counts

DEG Degrees

F Degrees Fahrenheit
FT Feet

G Gravitational Acceleration
GB Gigabyte

HR Hour

Hz Hertz

IN Inches

KBit Kilobit

KByte Kilobyte

KHz Kilohertz

KV Kilovolt

LBF Pounds Force
LBM Pounds Mass
MA Milliampere

MB Megabyte

Min Minutes

MSec Milliseconds

MV Mill volts

NA Not Applicable
ND Non Dimensional
QTI Quanta In

QTO Quanta Out

R Degrees Rankin
Rad Radians

151

Sec Seconds

SLUG Slugs
TB Terabyte
\% Volts
VAR Variable Units
Standard word size for a
Words computing platform
[0 Readability M Verification and Validation
Rationale O Workflow M Code Generation

M Simulation
Last Change V3.0

4.7.2 jr_0004: Error Handling
ID: Title jr_0004: Error Handling

Priority Mandatory
Scope ORION
MA‘I_'LAB All
Version

MA Check |No

Prerequisites |None

The developer shall add error handling in accordance with the “Error Handling and
Logging Guidance” memo (Doc #: FltDyn-CEV-11-52).

Description
P Link on ICE:
https://ice.exploration.nasa.gov/confluence/pages/worddav/preview.action?fileName
=ErrorHandlingGuidance.docx&pageld=106041166
[0 Readability M Verification and Validation
Rationale O Workflow M Code Generation

M Simulation
Last Change V1.0

4.8 Configuration Management

4.8.1 jh_0004: MATLAB artifacts under configuration control

ID: Title jh_0004: MATLAB artifacts under configuration control
Priority Mandatory

152

https://ice.exploration.nasa.gov/confluence/pages/worddav/preview.action?fileName=ErrorHandlingGuidance.docx&pageId=106041166
https://ice.exploration.nasa.gov/confluence/pages/worddav/preview.action?fileName=ErrorHandlingGuidance.docx&pageId=106041166

Scope ORION

MATLAB
Version

MA Check |No
Prerequisites None

If a Configuration Management tool is used the following files should be included for
each project:

all

. *.mdl files

. *.m setup scripts

. *.h files used for buses and ARINC blocks

. Utility files and models needed for simulation (*.c, *.cpp, etc.)

Some Simulink generated files are specific to the environment in which the
simulation is executed. This may cause issues when simulating the model in a

Description different environment. These files are not needed for simulation and will be
recreated once the model is run again. To avoid potential issued do not include the
following files in a project:

. *.mex* files

. slprj directory

. sfprj directory

. * rtw directory

. *.mat files created by running model

. Other files generated from running the model

[0 Readability O Verification and Validation

Rationale M Workflow 0 Code Generation

O Simulation
Last Change V1.0

153

5 Appendix

5.1 Modeling Guidelines Chart

The following table shows a guideline for which tool to use for different types of algorithms

Simple Logic

«if/then

sswitch/case
for/while loops
Complex Logic
enested if/then
*nested switch/case
enested for/while loops
Simple/Short
Numerical Expressions
Complex/Lengthy
Numerical Expressions

Numerical Expressions
containing continuously valued
states

Combination of:
*Complex Logic
*Simple Numerical Expressions
Combination of:
*Simple Logic
*Complex Numerical
Expressions
Combination of
*Complex logic
*Complex Numerical
Expressions

Modal Logic

X X X
X X
preferred
X
X X
preferred
X*
X
X X
For Logic For Math
X X
for Logic uel? [eerdis

and/or Math

X

5.2 Configuration Settings

List of configuration settings

5.3 Model Advisor Standards Checks Summary

Ex: If/then with <5 paths and no nesting

Ex: If/then with numerous paths and multiple
levels of nesting

Ex: <6 consecutive operations, <6
variables/signals

Ex: >6 consecutive operations, >6
variables/signals

Ex: Difference equations, integrals, derivatives,
filters

*The actual integrator function can be written
ineML

iterating a counter is considered a simple
numeric calculation

*Can use only Simulink, only eML or use
Simulink for the logic and eML for the math

*Use Simulink or eML for the numerical
calculations

Stateflow should invoke the execution of this
subsystem using a function-call

Where the control function to be performed at
the current time depends on a combination of
past and present logical conditions

ID: Title

Priority

Scope MA Check

ar_0001: Filenames

Mandatory

MAAB YES

ar_0002: Directory names Mandatory MAAB YES
bn_0001: Subsystem Name Length Limit Strongly recommended ORION YES
bn_0002: Signal name length limit Strongly recommended ORION YES
bn_0003: Use of I-Then-Else Action Subsystem to Replace Multiple Switches Strongly recommended ORION NO
db_0043: Simulink font and font size Strongly recommended MAAB YES
db_0081: Unconnected signals, block inputs and block outputs Mandatory MAAB YES
db_0097: Position of labels for signals and buses Strongly recommended MAAB NO
db_0110: Tunable parameters in basic blocks Strongly recommended MAAB YES
db_0112: Indexing Strongly recommended MAAB YES
db_0114: Simulink patterns for If-then-else-if constructs Strongly recommended MAAB NO
db_0115: Simulink patterns for case constructs Strongly recommended MAAB NO
db_0116: Simulink patterns for logical constructs with logical blocks Strongly recommended MAAB NO
db_0117: Simulink patterns for vector signals Strongly recommended MAAB NO
db_0122: Stateflow and Simulink interface signals and parameters Strongly recommended MAAB YES
db_0123: Stateflow port names Strongly recommended MAAB YES
db_0125: Scope of internal signals and local auxiliary variables Strongly recommended MAAB YES
db_0126: Scope of events Mandatory MAAB YES
db_0127: MATLAB commands in Stateflow Mandatory MAAB YES
db_0129: Stateflow transition appearance Strongly recommended MAAB NO
db_0132: Transitions in Flowcharts Strongly recommended MAAB YES
db_0133: Use of patterns for Flowcharts Strongly recommended MAAB NO
db_0134: Flowchart patterns for If constructs Strongly recommended MAAB NO
db_0135: Flowchart patterns for loop constructs Recommended MAAB NO
db_0140: Display of basic block parameters Recommended MAAB YES
db_0142: Position of block hames Strongly recommended MAAB YES
db_0144: Use of Subsystems Strongly recommended MAAB NO
db_0146: Triggered, enabled, conditional Subsystems Strongly recommended MAAB YES
db_0148: Flowchart patterns for conditions Strongly recommended MAAB NO
db_0149: Flowchart patterns for condition actions Strongly recommended MAAB NO
db_0150: State machine patterns for conditions Strongly recommended MAAB NO
db_0151: State machine patterns for transition actions Strongly recommended MAAB YES
db_0159: Flowchart patterns for case constructs Strongly recommended MAAB NO
dm_0001: Signal and Bus Element Naming Convention Strongly recommended ORION YES
ek_0002: Recursive functions Mandatory ORION YES
ek_0003: Global Variables Strongly recommended ORION m-lint
ek_0010: Matlab/Simulink algorithm States recommendations Strongly recommended ORION NO
hyl_0103: Model color coding Strongly recommended ORION YES
hyl_0110: Branching line format Strongly recommended ORION NO
hyl_0112: Title on each page Strongly recommended ORION YES
hyl_0113: Notes on each page Strongly recommended ORION YES
hyl_0114: Documentation of deviations to standards Strongly recommended ORION NO
hyl_0201: Use of standard library blocks only Mandatory ORION YES
hyl_0202: Use of revision/trace block Strongly recommended ORION YES
hyl_0203: Model publishing Recommended ORION NO
hyl_0204: Standard units Mandatory ORION NO
hyl_0206: Only boolean inputs to encoder blocks Strongly recommended ORION NO
hyl_0207: Limiting input to multiport switches Mandatory ORION NO
hyl_0208: Prevention of divide-by-zero Mandatory ORION NO
hyl_0209: Prevention of negative square root Mandatory ORION NO
hyl_0211: Prohibit use of test points Recommended ORION YES

hyl_0301: Block naming convention Strongly recommended ORION YES
hyl_0302: Usable characters for block names Strongly recommended ORION YES
hyl_0305: Block hame uniqueness Strongly recommended ORION YES
hyl_0307: Use of subsystem name Strongly recommended ORION YES
hyl_0308: Use of reference model name Strongly recommended ORION YES
hyl_0309: Block name usage Recommended ORION NO
hyl_0311: Naming of signals passed through multiple subsystems Strongly recommended ORION YES
im_0001: Guidelines for mixed use of Simulink and eML Strongly recommended ORION NO
im_0003: Controller model Mandatory ORION NO
im_0004: Top layer / root level Mandatory ORION NO
im_0005: Trigger layer Mandatory ORION NO
im_0006: Structure layer Mandatory ORION NO
im_0007: Data flow layer Mandatory ORION NO
im_0008: Source lines of eML Mandatory ORION YES
im_0009: Number of called function levels Mandatory ORION NO
im_0010: Number of inline function calls Mandatory ORION YES
im_0015: ORION GN&C Model Architecture Mandatory ORION NO
jc_0061: Display of block names Recommended MAAB YES
jc_0081: Icon display for Port block Recommended MAAB YES
jc_0121: Use of the Sum block Recommended MAAB YES
jc_0131: Use of Relational Operator block Recommended J-MAAB YES
jc_0141: Use of the Switch block Strongly recommended MAAB YES
jc_0171: Maintaining signal flow when using Goto and From blocks Strongly recommended MAAB NO
jc_0201: Usable characters for Subsystem names Strongly recommended MAAB YES
jc_0211: Usable characters for Inport block and Outport block Strongly recommended MAAB YES
jc_0221: Usable characters for signal line names Strongly recommended MAAB YES
jc_0281: Naming of Trigger Port block and Enable Port block Strongly recommended J-MAAB YES
jc_0351: Methods of initialization Recommended MAAB NO
jc_0451: Use of unary minus on unsigned integers in Stateflow Recommended MAAB YES
jc_0481: Use of hard equality comparisons for floating point numbers in Stateflow Recommended MAAB YES
jc_0491: Reuse of variables within a single Stateflow scope Recommended MAAB NO
jc_0511: Setting the return value from a graphical function Mandatory J-MAAB YES
jc_0521: Use of the return value from graphical functions Recommended J-MAAB YES
jc_0531: Placement of the default transition Recommended J-MAAB YES
jc_0541: Use of tunable parameters in Stateflow Strongly recommended MAAB YES
jh_0001: Use of ARINC blocks for partition to partition data flow Mandatory ORION NO
jh_0004: MATLAB artifacts under configuration control Mandatory ORION NO
jh_0005: Setup files for model parameter initialization Strongly recommended ORION NO
jh_0006: Setup files for bus initialization Strongly recommended ORION NO
jh_0007: blocks in a model Recommended ORION YES
jh_0011: Model release Mandatory ORION NO
jh_0018: Variable type casting Recommended ORION YES
jh_0021: Restricted Variable Names Mandatory ORION YES
jh_0023: Arrays Mandatory ORION m-lint
jh_0024: Strings Strongly recommended ORION YES
jh_0025: Structures Mandatory ORION m-lint
jh_0026: Switch/case statements Mandatory ORION m-lint
jh_0027: Multiple Code Paths Mandatory ORION m-lint
jh_0029: m-files Mandatory ORION m-lint
jh_0030: Extrinsic function Strongly recommended ORION m-lint

YES

jh_0040: Usable characters for Simulink Bus Names Strongly recommended MAAB (jc_0221)
jh_0041: Simulink Bus name length limit Strongly recommended ORION ELEEOOOZ)
jh_0042: Required Software Mandatory ORION NO
jh_0043: Approved Platforms Mandatory ORION NO
jh_0049: Use of Model References or Reusable Subsystems Strongly recommended ORION YES
jh_0051: Simulink Bus Format Strongly recommended ORION YES
jh_0055: Use of Masks Mandatory ORION YES
jh_0056: Sample Times Mandatory ORION YES
jh_0061: Use of Parameters Mandatory ORION NO
jh_0062: Constant Block Naming Strongly Recommended ORION YES
jh_0063: eML block input/output settings Recommended ORION YES
jh_0064: eML if statement Mandatory ORION NO
jh_0070: Model Configuration Settings Mandatory ORION YES
jh_0073: eML Header Mandatory ORION YES
jh_0079: Model and Matlab Filenames Mandatory ORION NO
jh_0084: eML Comments Mandatory ORION YES
jh_0093: Parameter Bus for eML Recommended ORION NO
jh_0109: Merge Blocks Strongly Recommended ORION NO
jh_0101: Use of Right-Handed Quaternions Only Mandatory ORION NO
jh_0110: eML Function Reuse Mandatory ORION NO
jh_0111: Bus Ordering and Alignment Mandatory ORION NO
jh_0117: Shared CSUs Across Domains Mandatory ORION NO
jm_0002: Block resizing Mandatory MAAB NO
jm_0010: Port block names in Simulink models Strongly recommended MAAB YES
jm_0011: Pointers in Stateflow Strongly recommended MAAB YES
jm_0012: Event broadcasts Strongly recommended MAAB YES
jr_0002: Number of nested if/for statement blocks Strongly recommended ORION YES
mdb_0032: Simulink signal appearance Strongly recommended ORION NO
mdb_0042: Port block in Simulink models Strongly recommended ORION YES
mdb_0141: Signal flow in Simulink models Strongly recommended ORION NO
mdb_0143: Similar block types on the model levels Recommended ORION YES
mj_0001: CSU input Bus Naming Recommended ORION NO
mj_0002: Junction Box Composition Mandatory ORION NO
mijc_0111: Direction of Subsystem Strongly recommended ORION YES
mijc_0501: Format of entries in a State block Recommended ORION YES
na_0001: Bitwise Stateflow operators Strongly recommended MAAB YES
na_0002: Appropriate implementation of fundamental logical and numerical operations Mandatory MAAB NO
na_0003: Simple logical expressions in If Condition block Mandatory MAAB YES
na_0004 Simulink model appearance Recommended MAAB YES
na_0005: Port block name visibility in Simulink models Strongly recommended MAAB YES
na_0006: Guidelines for mixed use of Simulink and Stateflow Strongly recommended MAAB NO
na_0007: Guidelines for use of Flow Charts, Truth Tables and State Machines Strongly recommended MAAB NO
na_0008: Display of labels on signals Recommended MAAB YES
na_0009: Entry versus propagation of signal labels Strongly recommended MAAB YES
na_0010: Grouping data flows into signals Strongly recommended MAAB YES
na_0011: Scope of Goto and From blocks Strongly recommended MAAB YES
na_0012: Use of Switch vs. If-Then-Else Action Subsystem Strongly recommended MAAB NO
na_0013: Comparison operation in Stateflow Recommended MAAB NO

5.4 Subsystem Masking Methods and Guidelines

The following document outlines methods and guidelines of masking a subsystem block with its
representative equation and provides examples for getting started. It also briefly summarizes the
masking requirements as defined by the Orion Modeling Standards document.

Masking a Subsystem:

To mask a subsystem block, right click the block and select “Mask Subsystem” from the menu. The

following dialog appears:

Mask Editor : Subsystem

Iron & Porks | Pararmeters | Initialization | Documentation

B=1e3

Options

Block. Frame

| visible v |
Icon Transparency

| Opaque Vl
Icon Units

| Autoscale Yl
Icon Rotation

| Fixed Vl
Port Rotation

| Default V|

Icon Drawing commands

Examples of drawing commands

Command | port_lakhel (label specific ports) W
=y
Synkax pork_label{"output’, 1, ey
(o) (e) (o) Covnt]

- The following Option should be set:

o lcon Units = “Normalized”
block is resized)

| Opaque

v]

MiCs

W

| Fixed

v]

(scales text positions as normalized values when the

- As per the modeling standards, mask dialogs and therefore mask parameters (on the
“Parameter” tab) are not allowed. Only change settings on the “Icon & Ports™ tab

5

- All further mask settings are made by calling functions from within the “Icon Drawing
Commands” pane.

- To make changes to a mask after the dialog is closed, right click the block and select “Edit
Mask” from the menu.

Displaying text:
Use Matlab’s disp() function to center a single line of text on the mask.
- Example:
O disp('Y = MX + B', 'texmode', 'on'")

=M+ B o

Subsystem

- Use “disp” function for masks whose equation occupies a single line. “disp”
automatically centers its text string on the subsystem.

- “disp” does not permit multiple lines to be displayed. To display multiple lines, use

text()
Use Matlab’s text() function to display multiple lines of text on the mask.
- Example:

O text(.3,.6,'Y = MX+B', '"texmode', 'on")

O text(.3,.4,'M = 1', ' 'texmode', 'on")
= Mx+B
b = 1 i
Subsystem

- The “text” function requires x & y positions as the first two arguments. To display
multiple lines, call text() once for each line, giving each call different position
coordinates.

- Set “Icon Units” equal to “Normalized” in the left hand Options pane of the mask editor

in order to make the position values scale as normalized values when the block is
resized.

Labeling a Port:

Once a block is masked, the underlying port names will no longer be displayed on the subsystem.
To enhance readability and understandability, the inputs and the outputs of the subsystem model
should be labeled to match variables in its function. Matlab’s port_label() function permits this.

Note: The port label function permits the use of TeX commands to label a port with a symbol. If
you choose not to label the port with its representative symbol, then it is suggested to label the port
with the same name as the underlying inport/outport for consistency.

- Extend the previous example by adding the following lines:
O port label('input',1l,'X','texmode', 'on'")
O port label ('output',1,'Y"', 'texmode','on'")

Using TeX commands:

The previous examples set the “texmode” parameter to “on”; however, they did not make use of
TeX commands within the text string. From the Matlab Help documentation:

“When the text Interpreter property is Tex (the default), you can use a subset of TeX
commands embedded in the string to produce special characters such as Greek letters and
mathematical symbols.” 2

The following example shows how to set the mask’s text and port labels to bold and 14 point font
using TeX commands:

port label('input', 1, '\bf\fontsize{14}X', 'texmode','on")
port label ('output',1l, '\bf\fontsize{l4}Y',6 'texmode', 'on")

disp('\bf\fontsize{1l4}Y = MX + B','texmode', 'on')

X Y=MX+B Y

W

Subsystem

Note:
- The °V character indicates an embedded TeX command to Matlab’s TeX interpreter
- All mask disp() and text() strings should be boldface and 14 point font for readability.
- There are many more TeX commands supported by Matlab’s TeX interpreter, search the
help file for “TeX Character Sequence Table” for a table of supported commands, or see the
Appendix in this document.

Advanced TeX Example:

$ = |+ FAt+ 5F2 at?

F =
oo 1-21= Fat- 5F2af2
Subsystem
port label('input',1,'I','texmode','on')

(]
port label ('input',2,'F','texmode','on')
port label('input',3, '\Delta *t', 'texmode',6 'on')
port_label('output',l,'\Phi','texmode','on')
text (.26, .7, "'"\bf \fontsize{14}\Phi \approx I + F\Deltat + .5F"2
\Deltat”2', 'texmode', 'on")
text (.15, .3, '"\bf \fontsize{1l4}I - \Phi~{-1} \approx F\Deltat -
.5F"2\Deltat”2"', 'texmode"', 'on"')

Note — The Matlab TeX interpreter does not recognize TeX numerator/denominator commands for
representing fractions.

Reference:

1 - Summary of Requirements

- Mask dialogs are not allowed, therefore creating mask parameters is not allowed (because
they automatically create mask dialogs)

- Port Labeling commands are to be grouped together ahead of Disp() or Text() commands in
the Icon Drawing Commands pane

- All mask disp() and text() strings are to be bold and 14 point font; port labels can be left at
their default settings

- All ports are to be labeled with their representative symbol or underlying port name

- Set option Icon Units = “Normalized”

2 - MathWorks — Matlab TeX Character Sequence Table
http://www.mathworks.com/help/techdoc/ref/text props.html#String

Character Sequence Symbol Character Sequence Symbol Character Sequence Symbol

\alpha \upsilon \sim

a U ~
\angle \phi \leq

pa ® <
\ast o \chi \infty

X co

\beta \psi \clubsuit

B W *»

http://www.mathworks.com/help/techdoc/ref/text_props.html#String

\gamma \omega \diamondsuit

Y w ¢
I
\delta \Gamma \heartsuit

¢] r v
|
\epsilon \Delta \spadesuit

€ A 3
|
\zeta \Theta \leftrightarrow

¢ © s
I
\eta \Lambda \leftarrow

n A &=
I
\theta \X1 \Leftarrow

(S} = <
|
\vartheta \Pi \uparrow

9 mn 1
|
\iota \Sigma \rightarrow

| z -
|
\kappa \Upsilon \Rightarrow

K Y >
T
\lambda \Phi \downarrow

A (0] !
T
\mu \Psi \circ

M y o
I
\nu \Omega \pm

\% Q +
I
\xi \forall \geq

3 v >
I
\pi \exists \propto

n 3 'S
I
\rho \ni \partial

p 3 a
I
\sigma \cong \bullet

(o) = °
I
\varsigma \approx \div
I
\tau \Re \neq

T R #
I
\equiv \oplus \aleph

= (&) N

\Im \cup \wp

R Y »
\otimes \subseteq \oslash

® c [0}
\cap \in \supseteq

n € 2
\supset \lceil \subset

) [c
\int \cdot \o

I o
\rfloor \neg \nabla

] - v
\lfloor | \times \ldots

X

\perp surd rime

N \ Y \p
\wedge \varpi

A @ \0 (4]
\rceil : \rangle N \mid
\vee \copyright

% ©
\langle (

10

