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1.1.Picture History of
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: Controls by Zhou et. Al.
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Gain/Phase Marging _J State Space
Simple but fiddly! Model/Observer Based
Ideal when: & Ideal when:
* plant info is scarce g2y h MI.MO
* performance not critical. * plant info 1s a.bunfle.mt.
* inverse of plant is close e * performance is critical
to a PID! P at specific conditions.

systems:
» nominal low order physics is

kﬂOWH. Figure 1.1: A picture history of control
e uncertainties, variations and
) ’ Cartoons from the standard
disturbances can be bounded. text book Robust & Optimal
 performance is critical over a Control by Zhou et. Al.

wide range of conditions.



1.2 Rebust Controls: -

NS . WOODWARD C Jif .
> - Synthesis' & Analysis

* Basic math framework: Doyle et. Al. ~1988.
* MATLAB® tools ~ 1995.
* Similar to 6c philosophy

- Design a controller to make the system performance and stability
insensitive to bounded operational and behavioral variations by design.

- Upfront Robust Design philosophy is at the core of this approach.
* Find a controller with guaranteed stability and performance
margins subject to bounded uncertainties.

* u- Analysis is powerful for linear systems:
- Can use it to assess robustness no matter how the controller was

synthesized.

* u- Synthesis has issues because outputs a “Magic” controller:
- Controller states are not physically tractable.
- High order controller needs reduction.



1.3.Robust Controller
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- Design Setup

Generalized Plant: P Objective of u-Synthesis:
- Fuel Metering System - Design For Worst Case Signals and
- Includes Desired Performance Systems -> Robust Performance

- Minimize the close loop energy gain
from w to z over all frequencies for
the whole family of P A plants

- Locate the easiest way (smallest A) to

P A Combinations: perturb performance and stability.
- Family of Plants

Controller: K
- MIMO
- Sensor Input Vector y .
- Controller Output Vector u «

Disturbances: w *'— P "—'_
- Load Disturbances
- Friction and Flow Forces Y H-@
- Commands | j

: ; K ;
Penalties: z | M

- Tracking Error
- Control Enel‘gy Fig. 1. Problem setup for o synthesis

Uncertainties: A
- Unmodeled Dynamics
- Sensor Limitations

----------------------------------------------
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1.4 Powerful Machinery
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Under the Hood

n = 1/(size of the smallest destabilizing perturbation)

: ’ _1
K Synthesis: K—Stla%gizing (l%f ”DMD ”00)
A
-1
; M
K L

Compute D: p Problem < Compute K: H_, Problem



2.1 Basic Limitations of

MW>.wooDWARD Current Robust Controls Tools

* Basic math theory is * Not clear where to add
sound but the tools output nonlinear compensation
a controller that is * Design weights used to drive
physically not tractable or  Synthesis are not physically
“Magic”. meaningful.

. . * Hard to interpret what p
The Synthesized values really mean!

controllers are high  omssadyssmdes
order, complex and not R R Aa BEEE
directly practical for
many applications. TN

* Many (if not most) real .. |
plants are non-linear, but RS
the theory and tools are
purely linear.

Frequency - rad/s



W, 2.2 Practical Limitations of
MS . WOODWARD '

Current Robust Controls Tools

* The complete controller design process undefined.

* u values do not enable NPI team interdisciplinary
collaboration.

* Visualization of results and trade-offs and
comparison with other controllers.

* How to convince OEM of safety critical machinery to
trust this controller.

* How to debug a problem in the field or during
development when the plant states with physical
meaning are not available.

* No features to enable Diagnostics and Prognostics.



3.1 Physics Based p-Synthesis:

M5>.WoOoDWARD A practitioner's breakthrough

New approach:
 Physics based p-synthesis
(Builds on available p-Tools in

Matlab). S e
 Extract reduced order o7

controller or manually design a °°

controller. R
« Use numerical optimization T

(MATLAB Optimization ® ol

Toolbox) to match the I/O 01

map of the reduced controller OF s

to the full p-controller. R RS 11 8 B 5, S RSt i

 Plot compares the full p-
controller with the final one.

10" 107 10° 10*
Frequency - rad/s
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15_.__.___:_1__|| __________________________________________________________________
| ||' B Actual Plant States Durmg
1°‘|||ﬁ Step

* Physically meaningful states help det
problems:

« e.g. can ask: why is this state not tracking the real
plant state?

3.2 Before & After Physics

Based p-Synthesis

Observer States- R
Before NSOV SOV S




M. WOODWARD 3.3 The Design Process

[ Requirements ] [System Models]

Systems Design Optimization
[ Plant Identify ]

Conceptual Design

\
\‘ - Pre!lmlnary Physics-based Convert to Insert H/'W H;[;s;::li:ll;
.- DeSIgn Controller Fixed Point Specific Math g vy >
Model
_/
/
Detail
Design <

Minimize Expensive Iterations
With Robust Controls




3.4 The2-DOF Design Model in
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- Simulink
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4. Industrial Appllcatlon to

W>.WOoODWARD WmWetermg System

* Large nonlinear friction due to “
stringent turndown ratios and flow huj |
accuracy requirements. [l N
* Stringent Performance and Stability = +|%FET_r = ‘ P s
Requirements: | CETHTR = Resowers
 positioning accuracy better than 0.005 %. ‘ & 7F/ ’;_E( Nagret
- step response E i g ;L,' 7w
* 100 ms rise time L T
 zero over/undershoot
« frequency response

e upper and lower bounds on magnitude
and phase response

» wide operational variations
(temperature, pressure, supply voltages,
flow loads, friction, command and Ball Valve
sensor noise etc).
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4.1 lte

ration 1 Results: Measured

Robustness to Friction: Step Response

Response remained close to ideal (red curve) despite 3 fold rise in friction.

Position (Rad)

Velocity (Rad/s)

Robustness of Step Response to Dry Friction Change from 3 to 9 Amps.
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Robustness to Friction: Frequency
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Response.

Magnitude and Phase response remained ideal up to very high frequencies

!

ion

in frict

« despite 3 fold rise

Frequency Response Comparison
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4.3. V&V : Frequency

WOODWARD
W Response

* Plot compiles data from 100 tests at extreme conditions.
*The worst case performance must remain inside bounds.
* The ability to design to meet specs upfront is key!

GS16DR-Dynamics Validation—Frequency Response Versus Spec:Robustness Check
By:Kamran Eftekhari Shahroudi, Date:2007-5-5-1739
Data File:GS16DR-DynamicsValidation—FrequencyResponseVersusSpec—Unit5-2007551739
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Rise Time(10%t090%)[mS]

Rise Time(5%t095%)[mS]

GS16DR-Dynamics Validation—Step Response:Rise Times:Unit6 4 4 ‘/ & ‘/ (] Ste
By:Kamran Eftekhari Shahroudi, Date:2007-3-7-2338 = L4 L p
Data File:GS16DR-DynamicsValidation-StepResponse-Unit6—-2007372338

Reésponse

100} 4

* Measured step responses
at extreme conditions.

80_.._' B e S

* The worst case rise time
Y Y must remain below 100 ms
20 OiaOia !IZZI.I Dia Oll C!ti CJ.I 0i 0i Gli 1i 1i1 1i (10% tO 90% Criterion).

150

* The ability to design to
meet specs upfront is key!

100}

[30)| 5006651006 29006510 6 6 Paa 6 B Do

01a 02a 03 03a 04 05 06 07 08 09 10 11 12
Tests IDs in the Required Order

200 200 200 200 -40 -40 -40 -40 68 68 68 6B 68
Ambient Temp (F)

750 750 O 0 750 750 O 0 750 O 0 0 750
Pressure (PSI)

350A 350A 200A 200A-40N —40N —40A —40A 68A 68A 68A B6BA 68A
Gas Temp (F)

125 90 125 125 125 90 125 90 125 125 125 90 150
Voltage (V)

— 7

N N N N N N N Hi(BA)N N Hi(BA)N N
Extra Friction{A)



4.5 Practical Hurdles: These
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~problems WJ not trivial !

* How to detect coding problems or design mistakes:
 Incorrect sampling rates.
« Finding the right balance between gains and sensor limitations.

* How to cope with design changes:
« Multi-body dynamics issues as the shaft was extended to add a
second position sensor.
« Numerical overflow problems due to incorrect fixed point scaling.

* Physics-Based approach always helped because:
« We could log physically meaningful observer states at run time.
« We found the source of some problems by checking for physically
impossible behavior or checking whether the observer was
tracking.



4.6 Experienced Advantages of
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”‘S'Bﬂﬁd&u-Synthesis

* Fast Cycle Time or Time to Market benefits since:
- mistakes are made faster upfront.
« the iterative work was shifted upfront in the design process.
 quick resolution of root cause of problems.

* Re-use benefits (e.g. for next project) since:
- majority of the work was at a higher abstraction level.

* Non-linear benefits since:
 the Physical meaning gave insight and handles to extend the
application of a purely linear tool to a highly non-linear problem.

* V&V Benefits since:

« minimized the build-test-fix cycle.
« more robust to spec changes (e.g. bandwidth change).
« more robust to variation in customer use profile.
* Easier to explain the function to the rest of the
development team.



\MW>.WOODWARD ﬂ’mnmg Problems

* The relationship of design weights and D-scales
to physics is not clear.

* Interpretation of p-plots in terms of well

understood physics are very difficult:
* Try explaining to NPI team members that we need to

reduce friction because p (the infimum singular value)
is too high. Good Luck!

* Visualization of the p-analysis results:

* Which uncertainty, noise, disturbance or plant
characteristic is the main robust performance or
stability driver at each frequency?

 How can we trade Robust Performance and
Stability?



W 5. Recommendations for Future
MS.WOODWARD |

- Tool Improvements

* Better visualization and interpretation of p-Synthesis results:
« Show which elements (e.g. sensor quality, mechanical uncertainties etc.)
are driving robust performance and stability at each frequency.
« The underlying math is there but we need tools to better interpret the
results.
« Link to 6 ¢ terminology.

* Develop tools to enable purely physics driven pu-Synthesis process:
« Physics of Design Weights and States
« Meaning of D-Scales.
« Useful decomposition.
« Approximately retaining physical meaning after reduction.

* For more information please read:
« Paper by K E Shahroudi in IEEE TCST 2006, vol. 14, no6, pp. 1097-1104.
« Presentation by the same authors at ACC 2007 Conference in New York
this summer.



~ Conclusions
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* We have measured unprecedented robust performance and
stability in a very tough industrial controls application.

* We built a Physics-Based Robust Controller Synthesis Process
on top of existing Matlab Toolboxes (u-Tools, Optimization
and Simulink).

* Robust Design Philosophy is infusing many large OEM’s
(such as GE) but the difficulty is:

« How to generate robust designs upfront by synthesis rather than build-
test-fix cycles.
« How to relate their normal robustness measures to metrics they already
understand (e.g. Six Sigma terminology).
* We believe these approaches can shine for highly complex

MIMO type problems elsewhere.

* We identified some key directions for improving the Robust
Controls Synthesis tools.



Optimization Solutions from

Woodward:"Aircraft Engine

Exdrar Moduls

Fusl Rltar Lubs and pased Sanzar

u
Luba Cil Tank Lintt
and 1l Fikar

Fuzl Pump PFermarent Magret

* Systems Integration

* Fuel Systems
* Fuel Metering, Pump,

Actuation, Air Valves,
Specialty Valves.

* Combustion System
 Fuel Injection, Ignition,

Manifolds, Sensors.

* Heat Management
- Heat Exchangers, Lube and

Scavenge Pumps, Filtration
System, Fuel/QOil Sensors.

* Electrical System
« Electronic Control, Sensor

See

Suite and Power Systems.

for details


http://www.woodward.com/
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Optimization Solutions from

Woodward: Reciprocating Engi

MPGAS

LP GAS

Electronic Fuel System
With afull range of sdlencid cperated gas admission

valves for bath main chambers and pre-chambears,
Weodward provides complete slectronic fud systems for
gas engines. Usad in conjunction with-a Weoodward
In-Pulsa™ programmabl e contral or other engine contral
unit, SOGAY \'aJw;Frcndds preciss cylinder-by-cylinder
control of fusl injection iming and duration to maximize
fusl efficiancy and minimize harmful exhaust smissons

S

The Networked Engine

The basis of a networked engine
revolves around a combination of smart
companents communicating with an
endgne control system. One example of
this srategy is the Tec.et® valve. The
Teckt is an intelligent (on-board digital
electronics), s ngle point, gas admission
valve that accurately meters mass flow.
Combined with a high-level control like
the EGS01, the result is an integrated gas
admisdon and speed control system
using Controller Area Network
{CAN bus) communications that provide
highly accurate and
flexible fuel metering.

ne
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