
1

MATLAB Production Server Interface for Tableau® software

Reference Architecture

2

Contents
Introduction .. 3

System Requirements ... 3

MathWorks Products .. 3

Tableau Products .. 3

Option 1: Getting Started: Using Web Data Connector .. 4

Architecture Diagram .. 4

Installation and Configuration .. 4

Usage ... 5

MATLAB Environment setup ... 5

Tableau Environment Setup.. 8

Option 2: Getting Started: Using External Service Connection .. 17

Architecture Diagram .. 17

Installation and Configuration .. 17

Usage ... 20

Tableau Environment Setup.. 20

MATLAB Environment Setup ... 24

Notes ... 28

Determining the correct option to use ... 28

Contact Information .. 29

Appendix A: Set up Internet Information Services ... 30

Appendix B: Handling input arguments from Tableau in MATLAB ... 34

3

Introduction
This reference architecture outlines the use of MATLAB and MATLAB Production Server for advanced
analysis and analytics within the Tableau platform. There are two options for interfacing Tableau with
MATLAB Production Server.

1) Web Data Connector: Retrieve data via MATLAB functions running on MATLAB Production Server for
use in Tableau
2) External Service Connection: Send data from Tableau for analysis by functions running on MATLAB
Production Server. This is similar to other external analytics integrations.

The following sections explain the steps involved for setting up and using both options. Please see
‘Determining the correct option to use’ in the Notes section at the end of this document for selecting the
option most appropriate for your application.

Note: The configurations provided in this document are for reference only.

System Requirements
This reference architecture is comprised of the following components and was developed using the

versions as listed. See the product documentation for any product specific requirements.

MathWorks Products
1. MATLAB (R2016b or later)

2. MATLAB Compiler SDK (R2016b or later)

3. MATLAB Production Server (R2016b or later)

Tableau Products
1. Tableau Desktop (10.3.1 or later)

2. Tableau Server (10.5.3 or later)

4

Option 1: Getting Started: Using Web Data Connector

Architecture Diagram

Installation and Configuration
The Web Data Connector (WDC) is a Tableau feature that helps Tableau users access any data available

over HTTP from internal web services, REST APIs, JSON data etc. The WDC is an HTML page with JavaScript

code to manage the communication with other web services/APIs. The HTML page can also display a UI

to the Tableau user who can then select the data to be loaded.

Note that although this example uses HTTP, MATLAB Production Server supports calls using HTTPS as well.
More information on security and enabling HTTPS is provided below:
https://www.mathworks.com/help/mps/security.html
Also note that for all examples in this document, the MATLAB application can be accessed via RESTful API

either by

(a) Packaging and deploying the MATLAB application to MATLAB Production server or

(b) Using MATLAB Compiler SDK to start up a test server in local machine.

The first option to integrate MATLAB applications with Tableau utilizes a custom WDC component that

connects to MATLAB Production Server as a data source. The HTML page is hosted on a web or application

server so that it is accessible over HTTP from Tableau.

To set up the WDC for connecting to MATLAB Production Server, locate the MPS_WDC_Sunspot.html file

in the package provided under \WDC\Examples\Web_Data_Connector\MPS_WDC_Sunspot.html

Although any web server can be used to host the HTML page, the example in this package has been

tested using Internet Information Services(IIS) and ‘http-server’

https://www.mathworks.com/help/mps/security.html

5

The Instructions to enable IIS on a Windows 10 machine are provided in Appendix A.

A second choice for hosting the web page is http-server, which is a simple, zero-configuration command-

line HTTP server. Help on starting this server is below:

https://www.npmjs.com/package/http-server

Usage
The example used for this demo will allow Tableau users to call a MATLAB application and analyze

cyclical data using a fast Fourier transform algorithm. Fourier transformations allows users to analyze

variations in data, such as an event in nature over a period of time. The data retrieved here represents

the number and size of sunspots for the last 300 years, using the Zurich sunspot relative number.

The function used in this MATLAB application to perform Fourier transformation is ‘fft’, which has a

lower computational cost when compared to other direct implementations. By integrating the MATLAB

analysis with Tableau, it is possible to provide Tableau users direct access to powerful analyzing

capabilities in MATLAB.

More information about this example is documented below:

https://www.mathworks.com/examples/matlab/mw/matlab_featured-ex37594814-analyzing-cyclical-

data-with-fft

The data received from MATLAB is parsed by the Web Data Connector (HTML file) and sent back to

Tableau, where the visualizations can be plotted to analyze trends and variations.

MATLAB Environment setup
Under ~\WDC\Examples\MATLAB, locate the getsunspotdata.m file and the WDCPOC.prj file.

Open the WDCPOC.prj file in MATLAB (MATLAB Compiler SDK is required). This will bring up the UI as

shown below:

https://www.npmjs.com/package/http-server
https://www.mathworks.com/examples/matlab/mw/matlab_featured-ex37594814-analyzing-cyclical-data-with-fft
https://www.mathworks.com/examples/matlab/mw/matlab_featured-ex37594814-analyzing-cyclical-data-with-fft

6

Click on the Test Client button highlighted above.

This will bring up the test environment for MATLAB Production Server. Check the ‘Enable CORS’ option

and click the start button.

7

This should start up the test server that enables MATLAB developers to test MATLAB applications in a

simulated deployed environment. The test server listens at localhost, and default port number 9910 as

below:

8

The figure above shows the test server in the MATLAB session listening at port 9910.

Tableau Environment Setup
Open Tableau and under ‘Connect’ option on start page, click on Connect to Web Data Connector.

9

This will bring up the UI below:

10

Type in http://localhost/MPS_WDC_Sunspot.html in the address bar. This should bring up the UI as below.

Click on ‘Submit’ button to register the connector with Tableau. The Web Data Connector provides

Tableau with the schema of the table that will contain the data to be sent to Tableau from the external

service (in this case from MATLAB Production Server).

Tableau will show the column names of the table to be retrieved as below:

http://localhost/MPS_WDC_Sunspot.html

11

Click on the ‘Update Now’ button. This will initiate an HTTP call using WDC to the test server started in

the previous step. The data from the sunspot data file in MATLAB is now available within Tableau as shown

below:

12

In the test server, the call from Tableau can be seen in the call logs:

Once data is available in Tableau, it is easy to plot the sunspot data and Fourier coefficients in the Tableau

worksheet. To create a new sheet in Tableau, locate the icons on the bottom toolbar in Tableau as shown:

13

Click on a new worksheet icon highlighted above. This will open a new worksheet in Tableau with the data

from MATLAB Production Server available as fields. Please note that the column names have been

renamed to real(y) and imag(y). Ensure that ‘Year’ appears under the ‘Dimensions’ tab, and ‘real(y), ‘Zurich

Number’ and ‘imag(y) appear under ‘Measures’ tab.

To plot the sunspot data, drag and drop the ‘Year’ field to Columns, and Zurich Number field to Rows.

Right click Year under Columns and ensure that the dimension of the data is used, and not the attribute

14

or measure as shown below. Similarly, right click on ZurichNumber in Rows and ensure ‘Dimension’ is

selected.

This will plot the sunspot data in Tableau as below:

15

To plot the Fourier coefficients, create a new sheet as described above, and drag and drop the Realvalues

to Columns, and ImaginaryValues to Rows. As before, right click on the field names and ensure that that

‘Dimension’ is selected. This will plot the Fourier coefficients as below:

The example included in this package also plots the power spectrum as a function of frequency, and as a

function of period. A dashboard can be created in Tableau displaying all the plots in a single screen.

16

This worksheet can also be published to Tableau Server, enabling access for multiple Tableau users using

a browser. It is also possible to refresh data on a schedule on Tableau Server so that the latest data can

be retrieved and plotted automatically.

17

Option 2: Getting Started: Using External Service Connection

 Architecture Diagram

Installation and Configuration
The External Service Connection option in Tableau provides a set of functions that you can use to pass

expressions to external services for integration with MATLAB. More information on this feature is

available at https://onlinehelp.tableau.com/current/pro/desktop/en-us/r_connection_manage.html.

MATLAB Production Server Interface for Tableau software is an external service that Tableau users can

connect to using External Service Connection. The interface is a Node.js server application that can run

either on an end users’ desktop machine in a test environment, or in a production environment depending

upon the scaling and redundancy needs.

A license for the optimization toolbox is required to run the MATLAB example discussed in this document.

The steps involved in installation and configuration of the interface application are:

1. Install Node.js

The interface application requires Node.js to be installed in the machine before startup. Node.js can be

installed from the below link:

 https://nodejs.org/en/download/

2. Unpack the MATLAB interface for Tableau software

https://onlinehelp.tableau.com/current/pro/desktop/en-us/r_connection_manage.html
https://nodejs.org/en/download/

18

The MATLAB package “Setup.exe” contains the interface application, as well as the MATLAB code and

Tableau workbook required for the example discussed in this document. Running the setup.exe installer

will unpack the Getting_Started.pdf guide and 2 folders as below:

Please note that running the setup.exe will only unpack the application, installation requires an

additional step as described below in (C).

The MATLAB interface for Tableau Software contains the Node.js application.

The Examples folder contains the MATLAB code and Tableau workbook required for the example

discussed in this document.

3. Install the interface

Installation of Node.js will make available the package manager for JavaScript (npm). npm enables users

to discover and download packages that other JavaScript users have created. Once Node.js has been

installed, change directories to the \MATLAB Interface for Tableau Software\Interface folder and run

the command

 $ npm install

If ‘npm’ is not available from this location, use the complete path to the npm file. This default location is

in the installation path for Node.js ‘C:\Program Files\nodejs’. This will install the dependencies required

for the interface application.

4. Configure the environment

The interface application contains a configuration file in the location MATLAB Interface for Tableau

Software\Interface\config\server.config that can be modified to reflect the environment in which the

application will be running. A sample config file is as below:

19

As can be seen in the image above, this is a JSON formatted string which can be edited to reflect the
correct settings for the interface in your environment. The main values to validate are:

(i) port – This is the port number where the interface will listen and accept connections from

Tableau. The default is 3001

(ii) mps_server – This is the URL for the MATLAB Production Server.

(iii) mpsPort – This is the port number where MATLAB Production Server is listening.

(iv) deployfolder – This is the folder where compiled MATLAB applications are deployed. This

setting is required if the MATLAB developer wishes to publish compiled archives directly to

MATLAB Production Server via the interface.

(v) authtoken - This is a unique key the MPS developer will need to provide to authorize the

publishing of compiled MATLAB applications using the interface.

5. Start the server

Start the server using the command ‘node bin/MATLABinterface’. This should start up the server listening

at the port specified in server.config. If the command is not recognized, you may need to include the

complete path to the node.exe file. Once the server starts, you should see the message as below:

{

 "name": "MATLAB Production Server Interface for Tableau software",

 "description": "A lightweight middleware for MATLAB Production Server",

 "state_path": "/tmp",

 "server_version": "Alpha",

 "creation_time": "",

 "port": 3001,

 "limit": "50mb",

 "mpsstarted": "MATLAB Production Server is available.",

 "mpsstopped": "MATLAB Production Server is not available",

 "authtoken":

"ap6Tp2kekrPrm5q1vUsHHVl6i8khWJrTispgOrczc20hIGRmhYPWArxOJXxrHsGf",

 "configFile": "main_config",

 "deployfolder": "C:\\MPS\\R2016B\\auto_deploy\\",

 "mps_server": "http://localhost",

 "mps_port": 9910

}

20

Usage
The example used for this option solves the classic travelling salesman problem where the goal is to find

the shortest closed path through a set of stops. MATLAB solves this problem using an iterative process by

determining subtours, and rerunning the optimization until all subtours are eliminated. More information

about this example can be found here:

https://www.mathworks.com/help/optim/ug/travelling-salesman-problem.html

The Tableau worksheet that visualizes the shortest path is included in this package under

“\ExternalServiceConnection\Examples\Travelling_Salesman_Problem”.

The server interface set up above receives requests for MATLAB analytics from Tableau. The server

formats the data received from Tableau as JSON, and makes a RESTful call via HTTP to MATLAB Production

Server. The results from the MATLAB computations are sent back to the node.js server, which then returns

it to Tableau.

Tableau Environment Setup
To enable Tableau to make a service call to the interface, follow the below steps:

a) In the Help option, click on Settings and Performance, then ‘Manage External Service Connection’

https://www.mathworks.com/help/optim/ug/travelling-salesman-problem.html

21

This will bring up the UI below:

Enter the information for Server and port number for the interface in the dialog above. The server

information is the hostname where the node.js application is running. The port number should match the

port number configured in the server.config file in the config folder for the interface.

22

In the above figure, the interface is running locally, so the server is localhost. The port number configured

in server.config file is 3001.

Click on Test Connection button to ensure successful connection to the interface.

b) Load the data file to work with in Tableau. This example uses the airports.csv file available under

Travelling_Salesman folder. Click on “Sheet1” to view the Tableau sheet

c) Under the ‘Measures’ section in Tableau, right click and select ‘Create Calculated Field’.

23

d) This will bring up the window to edit the calculated field. Enter the name of the calculated field in the

textbox.

Tableau provides 4 SCRIPT_XXXX functions to make an external service call. Depending on the data type

expected from MPS, use the appropriate function.

e) Specify the MATLAB package and function to call

The argument for the SCRIPT_XXXX function takes in the name of the MATLAB function, as well as the

data to be passed to the function. Consider the example below:

Here, the name of the CTF archive is TSP and the name of the MATLAB function is GetLatLongVector. This

is specified in the first argument as ‘TSP/GetLatLongVector’

24

The data to be sent to MATLAB follows the first argument. In the above example, The Longitude and

Latitude values are sent to MATLAB, and are specified in that order as arguments to the SCRIPT_XXXX

function. Please see ‘Limitations’ in the Notes section at the end of this document for more information

on data formats supported.

Click ok to accept the calculated field. This field can now be used in any of the plots or graphs in Tableau.

Any time the field is included as part of a worksheet, Tableau sends a request to the MATLAB Production

Server interface for Tableau and assigns the results of the call to the calculated field.

MATLAB Environment Setup
To ensure MATLAB Production Server handles the request from interface, follow the steps below:

a) Ensure that the MATLAB application is ready to accept input arguments from Tableau.

Input arguments from Tableau are structures with pre-determined names for each input argument.

Ensure that the MATLAB function can access the data sent by Tableau by following either of the

options described in Appendix B.

b) Deploy MATLAB package to MPS or use MATLAB Compiler SDK

Use the MATLAB Compiler SDK to package the MATLAB functions into deployable archives for deploying

to MATLAB Production Server. For more information, click on the link below:

 https://www.mathworks.com/help/mps/deployable-archive-creation.html

You can also use the testing environment available as part of the MATLAB to start up a test MPS server

locally. More information is at:

 https://www.mathworks.com/help/compiler_sdk/mps_dev_test/test-in-process.html

To quickly setup up a test MPS server using MATLAB Compiler SDK, follow the steps below:

(i) Click on Apps gallery and open Production Server Compiler App:

https://www.mathworks.com/help/mps/deployable-archive-creation.html
https://www.mathworks.com/help/compiler_sdk/mps_dev_test/test-in-process.html

25

(ii) Click on the ‘+’ button to bring up the file selection dialog and add the MATLAB code files to

package:

26

(iii) Once the MATLAB functions are selected, ensure that the Archive information matches your

specifications as highlighted above. In this example, the name of the archive(CTF) is TSP, and the

name of the function is the name of the MATLAB function added, i.e., GetLatLongVector.

(iv) Once the required files are added, click on the ‘Test Client’ button and then click start to start up

a local instance of MATLAB Production Server listening at port 9910.

27

c) Once the packaged MATLAB function is hosted on MPS or on the testing environment, the calls from

Tableau are routed to MATLAB by the interface via HTTP. Output from the MATLAB functions are

provided back to the Tableau calculated field, where it can be visualized.

Once the MATLAB and Tableau environments are setup, test the interaction between the applications by

clicking on the refresh button in Tableau. The refresh button is available in the toolbar in Tableau as

highlighted below, and is disabled if Tableau is set for auto-update. Refreshing, or auto-updating within

Tableau should send the data loaded in Tableau to MATLAB, and make the results from MATLAB available

in the map.

The MATLAB Compiler SDK ‘test Client’ window should show the successful call as below:

28

Notes

Determining the correct option to use
Option 1: Web Data Connector

Use the Web Data Connector option when

(a) There is no data to be sent from Tableau to the MATLAB function

 Tableau users may not always have access to the data to be loaded in Tableau. If the workflow

 requires a call to MATLAB to fetch the data, then the WDC option is the correct choice. This

 option does not require the Tableau user to send any data when making a function call to

 MATLAB.

(b) There is a need to collect information from several data sources

 Since the JavaScript code in the WDC controls the mechanisms for data collection from different

 data sources, there is more control over the data provided to Tableau. The WDC can retrieve

 data not just from MATLAB, but from other APIs, services etc.

Limitations:

The WDC mechanism requires that the data to be sent back to Tableau be formatted and controlled using

JavaScript code. Although this provides more control to the WDC developer, the disadvantage is that the

JavaScript code needs to be edited and deployed to the web server if the data schema changes.

29

A second limitation is that debugging of the WDC code during development can be time-consuming,

particularly if the data structure is complex. One possible option to test the WDC is using the simulator

environment provided by Tableau: http://tableau.github.io/webdataconnector/docs/wdc_debugging

Option 2: External Service Connection

Use the External Service connection option when

(a) There is requirement for ad-hoc querying and visualizing in Tableau

 During development phase, there may be a need to quickly query MATLAB and retrieve data sets.

 Implementing a WDC requires upfront investment in time and effort to develop the JavaScript

 code, so using the external services connection may be ideal in these situations.

(b) Tableau users expect an interface comparable to open source integration capabilities available within

Tableau

 The External service connection and SCRIPT_XXXX functions are used to access open source

 analytics in Tableau. Users accustomed to the syntax and structure of this call will find the

 environment and usage similar for integrating with MATLAB.

Limitations

One of the limitations of using the external service connection is that it requires that the number of rows

in the result data set match the number of rows in the input data sent from Tableau. For example, If

Tableau sends 30 rows to MATLAB, then it expects 30 rows in the result data set. If only a single value is

returned, Tableau will automatically replicate it 30 times. If MATLAB only sends back 25 values, then the

MATLAB function will need to be modified to create a blank array, fill 25 rows with data, and the rest as

NULL. If there is a mismatch in data size, Tableau displays an error message. This is a feature of External

Service Connection provided by Tableau, and applies to all calls to any external service.

A second limitation is that the four functions provided by Tableau (SCRIPT_STRING, SCRIPT_INT,

SCRIPT_BOOL, SCRIPT_REAL) all expect input parameters to be specified in the function call. Therefore, it

is necessary to have data loaded into Tableau, or type in ‘dummy’ data to use with the function call. It is

not possible to call an external service function without sending input parameters.

Additional documentation on errors that can occur when communication with an external service is

available here:

https://onlinehelp.tableau.com/current/pro/desktop/en-us/help.htm#r_connection_troubleshoot.html#any

Contact Information
Please contact us at mwlab@mathworks.com for questions and feedback.

http://tableau.github.io/webdataconnector/docs/wdc_debugging
https://onlinehelp.tableau.com/current/pro/desktop/en-us/help.htm#r_connection_troubleshoot.html
mailto:mwlab@mathworks.com

30

Appendix A: Set up Internet Information Services
These instructions for setting up the IIS server are not intended for production use and are intended

only for use in evaluating the interface.

A) In Windows search bar, type control panel and access the Control Panel App. This displays the UI

with All Items:

B) Click Programs and Features highlighted above

C) On the Uninstall or change a program page, click on ‘Turn Windows features on or off’ as shown

below.

D) In the dialog box that pops up, select the Internet Information Services (IIS) check box, then

click OK.

31

E)

Once IIS is enabled, copy the MPS_WDC_Sunspot.html page to the ‘C:\inetpub\wwwroot’ folder.

The default port number for the HTTP call to locally hosted HTML pages is 80. If the port needs to be

changed, this can be configured in Internet Information Services Manager. To do this right-click IIS-

>Default Web site and choose option to edit bindings. This example uses the default port number.

To ensure that the web page is hosted on IIS, bring up the IIS manager by typing ‘inetmgr’ in the search

bar in Windows. Click on the top-level name in the left panel and ensure that the server is started by

clicking on ‘Start’ under Actions->Manage Server in the right pane:

Note that if the server is already started, the start button will be disabled.

In the UI for the IIS manager, locate and expand ‘Sites’ on the left-hand pane as below:

32

Double click on ‘Default Web Site’ highlighted above. In the right panel, click on ‘Add’.

Type in MPS_WDC_Sunspot.html in the pop-up window and click ok:

The HTML page used for this demo will now appear in list of default documents. Ensure that this

document appears first on the list by selecting the file name and clicking on ‘Move Up’ or ‘Move Down’

on the right pane:

33

The web page hosted on the web server is designed to function as a web data connector within a Tableau

environment, and not designed to work independently in a browser as a web page. However, to test if the

web page is hosted correctly, open a browser and type in http://localhost:80/MPS_WDC_Sunspot.html in

the address bar. If the browser displays the below UI, then the web data connector is available for use

within a Tableau environment.

http://localhost/MPS_WDC_Sunspot.html

34

Appendix B: Handling input arguments from Tableau in MATLAB
When using the external service connection feature in Tableau, the MATLAB developer needs to be aware

of the data structure of the input arguments sent by Tableau. Tableau automatically assigns names that

start with an underscore (‘_’) to the input arguments. As an example, if there are 3 input arguments to

MATLAB, the first argument is named ‘_arg1’, the second as ‘_arg2’, and the third as ‘_arg3’.

This introduces an issue in MATLAB because the MATLAB structure will now have fieldnames as ‘_arg1’,

‘_arg2’ etc. MATLAB does not support accessing the data in the structure when the fieldname starts with

an underscore (‘_’).

To access the data in the structure of the input argument, you can either

1. remove the underscore (‘_’) in the field names or

2. convert the structure to a cell array or table

Option 1: Remove the underscore (‘_’)

To replace the ‘_’ in the fieldnames of the structure, create a new MATLAB function called

renameStructFields.m. Copy and paste the below code to the file:

In your main MATLAB function, call the renameStructFields function and pass in the input arguments

from Tableau. This will return a new structure with the ‘_’ removed.

You can now access the data in the structure as you normally would.

Option 2: Convert the structure to a cell or table

If you want to pass in multiple input arguments to MATLAB, you can configure the MATLAB function to

accept any number of input arguments from Tableau by using ‘varargin’. Please see below link for more

information:

https://www.mathworks.com/help/matlab/ref/varargin.html

An example of the change to be made is given below:

function newstruct = renameStructFields(str)
allNames = fieldnames(str);
newFieldNames = strrep(allNames, '_', '');
nstructs = numel(str);
nfields = numel(newFieldNames);
emptycell = cell(1, nfields);
for ii = 1:nfields
 emptycell{ii} = {str.(allNames{ii})};
end
cslist = [newFieldNames(:)'; emptycell];
newstruct = struct(cslist{:});
end

https://www.mathworks.com/help/matlab/ref/varargin.html

35

If the MATLAB function signature is

then modify the function signature to be

 You can then index into the parameters with:

Here inputParams is a cell. The parameters A, B and C can be accessed using standard MATLAB

operations. For example,

function output = MPSFunction(A,B,C)

Function output = MPSFunction(varargin)

inputParams = struct2cell(varargin{1});

A = inputParams{1}; B = inputParams{2} ; C = inputParams{3}

