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Key Takeaways

Credit risk can be captured with the structural Merton-type model

This model can be implemented using the MC (Monte Carlo) method

Parallelization led to a remarkable 25x speedup of simulation time

This was done using the MathWorks Parallel Computing Toolbox
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SRAM and UBS

e About SRAM:
— Statistical Risk Aggregation Methodology (SRAM) team
— | am mainly responsible for credit risk
— We are a team of 9 people (backgrounds in physics, applied math, statistics)
— SRAM aggregates all risks of UBS for Economic Capital (Basel Pillar 2)
— We collaborate closely with reporting, IT, and other methodology teams

e About UBS:
— Swiss global financial services company
— Serving private, institutional, and corporate clients worldwide
— Serving retail clients in Switzerland

— Business strategy is centered on its global WM business and its universal bank in Switzerland,
complemented by its GIAM business and its IB

— UBS is present in all major financial centers worldwide (NY, London, CH, HK, Tokyo etc.)
— It has offices in more than 50 countries and employs roughly 60k people (~22k in CH)

o UBS



Innovations, Challenges, and Achievements (1)

e Speed-up of simulation

1st version (on desktop) 2" version Current version
Simulation time 3 days 18 hours 1 hour

e The simulation of 500'000 default scenarios is parallelized along the MC dimension:

Scenario Default

Scenario Default
1 FALSE - RS
2 TRUE 2 TRUE
3 FALSE > 3 FALSE

500'000 FALSE 1'000 FALSE |-

- \/
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Innovations, Challenges, and Achievements (2)

Credit portfolios can be quite large: # counterparties > 100'000

MATLAB workers only have limited memory

memory coman® There is a limit on MC simulations one can run on each MATLAB worker

In our case, one worker can handle about 1'000 MC simulations
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Structural Merton model

2

e Company A's asset returns are governed by a Brownian motion dp;, = (r — "7) «dt + o * dW;

e We perform Monte Carlo simulations to obtain 500'000 scenarios

e Default occurs if asset (returns) fall below a threshold implied by the liability level

In these scenarios, Company A would
not have defaulted

Default threshold implied In this scenario, Company A would have defaulted

by probability of default/rating
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A Merton-type Bernoulli mixture model

e Afirm's asset returns depend on common factors and specific factors
e Common factors drive the correlation between different firms' asset returns

becomes

e Structural Merton model —— Merton-type Bernoulli mixture model
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Probability of Joint Default

* In the one-factor portfolio model with uniform correlation p, the probability that two
counterparties i, j default jointly is given by

JPD;; =P|l; = 1,1, = 1] = @,[@[p;], 27 |p;]; p]

| 1 | !
probability of joint default (in basis poinis)

JPD; ;

correlation of 16% implies prob giadint default of 0.065%, or 6.5 basis points

correlation
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Correlated defaults (1)

Correlation p = —90% Correlation p = 0%
Asset returns of Company A Joint probability density function Asset returns of Company A Joint probability density function
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Correlated defaults (2)

Correlation p = 30%

Asset returns of Company A Joint probability density function
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Correlation p = 80%

Asset returns of Company A Joint probability density function

Scatter plot of asset returns Asset returns of Company B




Outline of Simulation

e Returns are simulated jointly using a multi-factor model
Tt:B*Ft-l-St, COV(Tt,TtT):B*BT+D
1. Draw idiosyncratic returns g:~N(0,diag(D) )

2. Draw a covariance matrix (B * BT)~SW, (%B x* BT; P)

3. Draw systematic returns (B« F,)~N(0, (B =« BT))

4. Create full returns r:=(Bx*F;)+ &

5. Standardize returns f; = ry.x (diag(B * BT) + diag(D))_%
6. Compute loss indicator l =1 co-1pp)

7. Compute loss distribution L = EAD.x LGD.x 1
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Random versus fixed correlations: impact on loss
distribution
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e Each blue circle depicts a loss scenario. The x-value shows the realized loss based on fixed
correlations, while the y-value indicates the corresponding realized loss arising from random
correlations. While the maximum loss in the fixed correlations regime is only CHF 225m, it is CHF
290m with random correlations. — If both loss distributions were identical, all the loss scenarios
would lie on the red line.
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Code Architecture: lllustration

Generate systematic factor
scenarios

Vi

1. Generate idiosyncratic

returns scenarios

Block 5

2. Generate normalized total Block 4
returns , defaults and losses Block 3

Block 2

Block 1

Collect loss scenarios
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Conclusion and Outlook

o Parallelization led to a remarkable 25x speedup of the simulations

e Challenges ahead:
— Further reducing run time by simulating more efficiently
— Finding a scheduler that does not self-destruct when offloading too big jobs

— Handling huge data outputs (TB)
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